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ABSTRACT: Diffusion of a solute can be induced by the concentration gradient of another solute in solution. This transport
mechanism is known as cross-diffusion. We have investigated cross-diffusion in a ternary protein−salt−water system. Specifically,
we measured the two cross-diffusion coefficients for the lysozyme−NaCl−water system at 25 °C and pH 4.5 as a function of
protein and salt concentrations by Rayleigh interferometry. One cross-diffusion coefficient characterizes salt osmotic diffusion
induced by a protein concentration gradient, and is related to protein−salt thermodynamic interactions as described by the
theories of Donnan membrane equilibrium and protein preferential hydration. The other cross-diffusion coefficient characterizes
protein diffusiophoresis induced by a salt concentration gradient, and is described as the difference between a preferential-
interaction coefficient and a transport parameter. We first relate our experimental results to the protein net charge and the
thermodynamic excess of water near the protein surface. We then extract the Stefan−Maxwell diffusion coefficient describing
protein−salt interactions in water. We find that the value of this coefficient is negative, contrary to the friction interpretation of
Stefan−Maxwell equations. This result is explained by considering protein hydration. Finally, protein diffusiophoresis is
quantitatively examined by considering electrophoretic and hydration effects on protein migration and utilized to accurately
estimate lysozyme electrophoretic mobility. To our knowledge, this is the first time that protein diffusiophoresis has been
experimentally characterized and a protein−salt Stefan−Maxwell diffusion coefficient reported. This work represents a significant
contribution for understanding and modeling the effect of concentration gradients in protein−salt aqueous systems relevant to
diffusion-based mass-transfer technologies and transport in living systems.

■ INTRODUCTION

Diffusion in liquids1−4 is important for applications in which
concentration gradients occur such as controlled-release
technologies,5,6 separation science,7 phase transitions,8,9

dynamics of living systems,10−12 reaction kinetics including
pattern formation,13−15 and fluid dynamics16,17 in general.
Diffusion is especially important for mass-transfer applications
in which convection is eliminated, for example, by using
capillaries or porous media.9,18 This transport process plays also
an important role in microfluidic technologies.19−23

One not-well-understood aspect of diffusion in multi-
component systems is the mechanism of cross-diffusion;1,24−29

i.e., diffusion of a solute can be induced by the concentration
gradient of another solute in solution. Cross-diffusion is
expected to significantly contribute to the drying processes
involving polymer−solvent mixtures,30 transport across semi-

permeable membranes7 for dialysis applications, and the
mechanism of pattern formation in reaction−diffusion
systems.28 Another phenomenon that can be linked to cross-
diffusion is diffusiophoresis.31−33 This can be described as the
migration of one colloidal particle induced by the concentration
gradient of low-molecular-weight solutes. Interestingly, salt-
induced diffusiophoresis has been observed inside microfluidic
devices.20,34 Thus, it is believed that salt concentration
gradients with tunable amplitude and direction could be used
to achieve a strongly amplified particle migration inducing
either spreading or focusing of the particles in solution.
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Cross-diffusion effects are often modeled by employing the
Stefan−Maxwell (S−M) equations.35,36 Here, the concentra-
tion gradients are replaced by the chemical-potential gradients,
the actual driving forces for diffusion. Specifically, the chemical-
potential gradients of all diffusing species are written as linear
combinations of differences in diffusion rates between two
species. The coefficients of these linear combinations consist of
a symmetric matrix of friction coefficients describing two-
species interactions. The S−M diffusion coefficients are defined
as inversely proportional to the individual friction coefficients.
It is important to observe that, while the S−M diffusion
coefficients associated with the solvent−solute interactions are
normally known, those describing the interaction between two
solute species are typically unknown and are often estimated
from empirical equations.29,36

Due to the applications mentioned above, cross-diffusion
studies are expected to be very important for protein aqueous
solutions. Indeed, protein systems usually contain other low-
molecular-weight solutes. These are necessary for tuning
electrostatic interactions (salts),37 stabilizing/destabilizing the
protein native state,38 modulating enzymatic activity,39,40

mimicking physiological conditions, and promoting protein
crystallization.41

Most protein diffusion studies have been performed using
dynamic light scattering (DLS).42−44 In multicomponent
systems, the measured diffusion coefficient approximately45,46

characterizes protein diffusion due to its own concentration
gradient. By applying the theory of Brownian motion,47 this
coefficient has been primarily used to calculate the hydro-
dynamic radius of the investigated macromolecules;48,49

however, DLS cannot be used to characterize cross-
diffusion.45,46

Experimental and theoretical diffusiophoresis studies have
been performed on large (size of the order of 100 nm) colloid
particles.33,34 Theoretical studies have focused on under-
standing how the concentration gradients of low-molecular-
weight solutes produce local pressure gradients at the interface
between a rigid particle and the surrounding fluid. The resulting
force causes particle migration. However, the extrapolation of
these studies to the relatively smaller proteins (size range 1−10
nm) may be questionable. For example, the effects of protein
preferential solvation are expected to be very important for
protein diffusiophoresis. Moreover, diffusiophoresis does not
address the other cross-diffusion mechanism, i.e., diffusion of
the low-molecular-weight solute induced by the concentration
gradient of large particles. Here, we will denote this other cross-
diffusion mechanism as “osmotic diffusion” due to its strong
ties to thermodynamic interactions. This term was first
introduced by Toor in 1957 for multicomponent gas
mixtures.50

Few experimental cross-diffusion studies on protein−salt
aqueous solutions have been performed at 25 °C. Cross-
diffusion was investigated in the case of bovine serum albumin
using a conductometric method.26 However, these studies were
limited to low salt concentrations. The remaining experimental
studies were performed at this laboratory on lysozyme as a
function of salt concentration at one protein concentration
using the Rayleigh interferometric method.25,51−54 The high
precision of the experimental results and the wide range of salt
concentrations have been crucial for characterizing the relation
of protein−salt thermodynamic interactions to salt osmotic
diffusion.51−55 Indeed, salt osmotic diffusion could be linked to
the preferential-interaction theory developed by Timasheff and

Record.56,57 However, in relation to protein diffusiophoresis,
the proposed theoretical models did not describe the
corresponding experimental results satisfactorily. Moreover,
since these studies were performed at one protein concen-
tration only, it was unclear whether the effect of protein−
protein net interactions on protein cross-diffusion could be
neglected. This aspect is crucial since a diffusiophoresis model
would describe protein cross-diffusion in the limit of zero
protein concentration.
In this paper, we report measurements of cross-diffusion

coefficients for lysozyme as a function of protein concentration
at four NaCl concentrations, pH 4.5, and 25 °C. Our
experimental results have allowed us to characterize protein
diffusiophoresis and salt osmotic diffusion as a function of salt
concentration in the limit of zero protein concentration. We
propose a new model on protein diffusiophoresis, which is
based on protein charge and hydration effects. Our
experimental results were also utilized to estimate the
electrophoretic mobility of lysozyme and determine the S−M
diffusion coefficient characterizing the solute−solute interaction
between protein and salt ions. This work represents a major
addition to our previous reports on lysozyme−salt−water
systems.25,51−55,58

Fick’s First Law. Cross-diffusion coefficients are defined by
the extended Fick’s first law,24−26 which describes the diffusion
fluxes of the solute components as a linear combination of the
corresponding solute concentration gradients. For our ternary
protein (1)−salt (2)−water (0) system, we have25

− = ∇ + ∇J D C D C1 11 1 12 2 (1a)

− = ∇ + ∇J D C D C2 21 1 22 2 (1b)

Here, Ci is the molar concentration of solute i (with i = 1, 2), Ji
is its corresponding flux, and the four Dij’s (with i, j = 1, 2) are
the diffusion coefficients. The main-diffusion coefficients, D11
and D22, describe the flux of a solute component (protein (1)
or salt (2)) due to its own concentration gradient, while the
cross-diffusion coefficients, D12 and D21, describe the flux of a
solute due to the concentration gradient of the other solute.
Diffusion coefficients can be reported relative to different
reference frames and eqs 1a and 1b are applicable in volume-
fixed, solvent-fixed, and other frames. Diffusion coefficients are
measured in the laboratory-fixed frame, which is an excellent
approximation of the volume-fixed frame.59−61

Normalized Cross-Diffusion Coefficients. The goal of
this section is to introduce two normalized cross-diffusion
coefficients, D̂12 and D̂21, which will be utilized to characterize
the behavior of protein diffusiophoresis and salt osmotic
diffusion respectively as a function of salt concentration in the
limit of zero protein concentration. These coefficients will be
directly calculated from the measured cross-diffusion coef-
ficients, D12 and D21, and known properties such as the protein
tracer-diffusion coefficient and the thermodynamic and trans-
port properties of the binary salt−water system.
To introduce the definitions of D̂12 and D̂21, we start from

the linear laws of irreversible thermodynamics. These laws are
simpler in the solvent-fixed frame than in the volume-fixed
frame. Thus, our measured volume-fixed diffusion coefficients
were converted into the corresponding solvent-fixed coef-
ficients by utilizing well-established equations based on the
partial molar volumes, V̅i, obtained from density measurements
(see the Supporting Information).59,62
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Linear laws of irreversible thermodynamics for isothermal
diffusion describe diffusion in terms of gradients of solute
chemical potentials, μi.

61 For our ternary system, we have53

μ μ− = ∇ + ∇J L L1 11 1 12 2 (2a)

μ μ− = ∇ + ∇J L L2 21 1 22 2 (2b)

where Lij are the Onsager transport coefficients in the solvent-
fixed frame. The Lij matrix is symmetric. and L12 = L21
represents the Onsager reciprocal relation.63,64 We can use
eqs 1a, 1b, 2a, and 2b to relate the solvent-fixed diffusion
coefficients to the Lij according to

μ μ= +D L L11 11 11 12 21 (3a)

μ μ= +D L L12 11 12 12 22 (3b)

μ μ= +D L L21 21 11 22 21 (3c)

μ μ= +D L L22 21 12 22 22 (3d)

where μij ≡ (∂μi/∂Cj)T,p,Ck,k≠j are the molarity-based chemical-
potential derivatives, T is the absolute temperature, and p is the
pressure.
Equations 3a−3d provide the means to introduce the two

normalized cross-diffusion coefficients, D̂12 and D̂21. If we
divide D12 and D21 by L11μ22 and L22μ22, respectively, eqs 3b
and 3c become

μ
μ
μ

= +
D

L
L
L

12

11 22

12

22

12

11 (4a)

μ
μ
μ

μ
μ

= +
D

L
L
L

L
L

21

22 22

21

22

11 11

22 22

12

11 (4b)

In the limit of C1 → 0, μ11/RT = 1/C1 and the protein main-
diffusion coefficient, D11 = L11μ11, becomes the corresponding
tracer-diffusion coefficient, Dp, characterizing protein Brownian
mobility in solution. Correspondingly, D22 = L22μ22 becomes
Ds, the solvent-fixed salt diffusion coefficient in the binary salt−
water system. Moreover, we can write μ22/RT = 2ys/C2 with ys
= 1 + d ln y±/d ln C2 being the binary salt−water
thermodynamic factor and y± its mean ionic activity coefficient.
The factor “2” in the expression of μ22/RT applies to NaCl and
symmetric electrolytes in general. It follows that L11μ11, L11μ22
and L22μ22 in eqs 4a and 4b can be rewritten in the following
way:

μ =L D11 11 p (5a)

μ =L C y C D(2 / )11 22 1 s 2 p (5b)

μ =L D22 22 s (5c)

Note that Dp, Ds, and ys are functions of the salt concentration.
The values of Ds and ys are available through the literature of
electrolyte solutions. The value of Dp, in our case, will be
obtained by extrapolating the ternary protein diffusion
coefficient, D11, to C1 = 0. Extrapolation of DLS protein-
diffusion coefficients to C1 = 0 can be also employed to
determine Dp(C2).

42−45

On the basis of eqs 4a, 4b, 5b, and 5c, we define two
normalized limiting cross-diffusion coefficients as

̂ ≡
→

D C D y C Dlim [ /(2 )]

for protein diffusiophoresis

C
12

0
2 12 s 1 P

1

̂ ≡
→

D D Dlim ( / ) for salt osmotic diffusion
C

21
0

21 s
1

Note that D̂12 is the ratio between the diffusiophoresis
mobility31−33 of a particle and its Brownian mobility. The factor
2ys takes into account electrolyte dissociation properties and
thermodynamic nonideality.65 On the other hand, as will be
described below, D̂21 is approximately a salt partitioning
coefficient.
The thermodynamic quotients μ12/μ22 and μ21/μ22 are

mathematically linked to each other.61,62 In the limit of C1 →
0, we have

μ
μ

γ γ= + ̅
− ̅

≅
C V

y C V2 (1 )s

12

22

2 2

2 2 (6a)

μ
μ

γ γ= − − ̅ + ̅ ≅ + ̅C V C V C V(1 )21

22
2 2 2 1 2 1

(6b)

where we have introduced γ ≡ −limC1→0 (∂m2/∂m1)μ2,T,p, with
mi being the molality of component i. Note that γ is defined as
the negative of the protein−salt preferential-interaction
coefficient.56,57,66 Preferential-interaction coefficients have
been measured for several protein systems using equilibrium
dialysis and vapor pressure osmometry.56,67 Since these are
negative for proteins in the presence of salting-out agents such
as NaCl for lysozyme, we have introduced γ > 0 for
convenience. The term C2V̅2(2ys)

−1(1 − C2V̅2)
−1 in eq 6a is

very small (0.0025 and 0.0092 at C2 = 0.25 and 0.90 mol dm−3,
respectively) compared to γ (as will be appreciated later) and
can be neglected. Similarly, we will also neglect (1 − C2V̅2) in
eq 6b since the error associated with the approximation (1 −
C2V̅2)γ ≅ γ is 1.7% at the highest experimental salt
concentration.
If we now insert eqs 5a, 6a, and 6b into eqs 4a and 4b,

protein diffusiophoresis and salt osmotic diffusion are
respectively described by

γ λ̂ = −D12 (7a)

γ αλ̂ = + ̅ −D V C21 1 2 (7b)

where α ≡ Dp/Ds and we introduce λ ≡ −limC1→0 (L12/L11) as a
fundamental transport parameter describing protein−salt
interaction. An expression for λ will be derived from the S−
M equations later (see Discussion).
As shown by eq 7a, protein diffusiophoresis equally depends

on both the thermodynamic and transport parameters. On the
other hand, because Dp is small compared to Ds (see Results),
the value of αλ contributes only about 10% to D̂21 in eq 7b.
Thus, D̂21(C2) is approximately a thermodynamic quantity
related to γ(C2). That D̂21 is approximately a thermodynamic
quantity can be understood by considering eq 1b. If protein
diffusion in the presence of its own concentration gradient is
significantly slow, the relatively fast salt diffusion will lead to a
quasi-equilibrium condition, J2 = 0, in the presence of a much
slower dispersing protein concentration gradient. This leads to
D21/D22 ≈ −(∂C2/∂C1)μ2,T,p, where salt osmotic diffusion due
to the protein concentration gradient is counterbalanced by salt
diffusion due to its own concentration gradient.54 Note that this
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setting is analogous to that of salt partitioning across a
membrane not permeable to protein macromolecules. In other
words, the quotient D̂21 approximately describes the difference
in salt concentration between two solutions of different protein
concentrations at equilibrium. We note that our description of
D̂21 resembles that of the reaction equilibrium constant being
the ratio of the kinetic constants of forward and reverse
reaction steps.
In the Results, the measured Dij(C1,C2) will be utilized to first

extract D̂12(C2) and D̂21(C2) and then calculate γ(C2) and
λ(C2) from eqs 7a and 7b. All these quantities will be then
theoretically examined in the Discussion.

■ EXPERIMENTAL SECTION
Materials. Six times recrystallized and lyophilized egg-white

lysozyme was purchased from Seikagaku America and used
without further purification. Deionized water was distilled and
then passed through a four-stage Millipore filter system to
provide high-purity water for all the experiments.25 A protein−
water stock solution was prepared by weight. The molecular
weight of lysozyme was taken to be 14 307 g mol−1.
Corrections were made for the chloride ion weight fraction in
the lysozyme samples as shown in ref 25. Mallinckrodt 99.9%
analytical reagent grade NaCl was dried at 400 °C overnight
and used without further purification.
Solution Preparation. Precise masses of lysozyme stock

solutions and dried NaCl were added to flasks and diluted with
pure water. Dilute HCl was added to adjust the pH to 4.5. Any
residual solution on the pH electrode was washed back into the
solutions, and the dilutions were completed by mass to reach
the final target lysozyme and NaCl concentrations. A Corning
135 pH meter with an Orion 8102 ROSS combination pH
electrode, standardized with Corning reference solutions, was
used to measure the pH of the solutions used for diffusion
measurements. It is important to observe that adjusting the
solution pH becomes more difficult as the lysozyme
concentration decreases, especially for those solutions with
lysozyme concentrations lower than 0.3 mM. This can be
related to the correspondingly reduced self-buffering properties
of lysozyme. The densities of these solutions were measured to
determine the corresponding molar concentrations and to
calculate partial molar volumes.68 All density measurements
were made using a computer-interfaced Mettler-Paar DMA40
density meter, thermostatted with water from a large, well-
regulated (±0.01 °C) water bath.
Rayleigh Interferometry. Ternary mutual diffusion

coefficients were measured at 25.00 °C with a Gosting
diffusiometer operating in the Rayleigh interferometric optical
mode.25,69 The refractive-index profile inside a diffusion cell is
measured as described in ref 25 and references therein. Fifty
refractive-index profiles were obtained during the course of
each experiment. Experiments were performed by the free-
diffusion method in a 10 cm vertical diffusion cell with a 2.5 cm
horizontal optical path length and a 0.3 cm width. The
temperature was regulated to ±0.001 °C precision and ±0.01
°C accuracy. Initial step-function distributions of solute
concentrations were prepared using a pair of bottom and top
uniform solutions with the boundary located at the center of
the cell. All experimental data were obtained before detectable
concentration changes occurred at the top and bottom ends of
the cell, consistent with the free-diffusion boundary condition.
The pair of bottom and top solutions must have different

compositions in order to generate a concentration gradient

during each diffusion experiment. For each pair of solutions, we
report the mean molar concentrations of lysozyme (1) and
NaCl (2) (C1, C2). A minimum of two experiments is required
for determining the four ternary diffusion coefficients. These
two experiments must have different combinations of solute
concentration differences across the diffusion boundary. The
two chosen experiments are those in which either the salt or the
protein concentration of the two solutions is different while the
corresponding concentration of the other solute is the same. To
verify reproducibility, two other duplicate experiments were
performed at each set of mean concentrations. The volume-
fixed diffusion coefficients were obtained by applying the
method of nonlinear least squares to the extracted profiles of
the refractive index.70 The corresponding solvent-fixed values
were then calculated (see the Supporting Information).59,62

Values are reported in Table 1. Note that the experiment with

the initial protein concentration gradient dominates the
determination of D21 while that with the initial salt
concentration gradient dominates the determination of D12.
We find that the values of D21 at lysozyme concentrations

lower than 0.60 mM somewhat deviate from the observed
behavior at higher protein concentrations when plotting this
coefficient as a function of C1. These deviations did not
correlate with salt concentration. To a smaller extent, this
behavior was also observed for D12 when plotting D12/C1 as a
function of C1. These observed deviations can be attributed to
the important role of the protein charge on the value of the
cross-diffusion coefficients (as shown by eqs 12 and 24) and the
difficulties of adjusting the solution pH when the protein
concentration is too low. Indeed, the experiments with the
initial protein concentration gradient require a relatively low

Table 1. Ternary Diffusion Coefficients in Solvent-Fixed
Frame for the Lysozyme−NaCl−Water System at 25 °C and
pH 4.5

C1/10
−3

mol dm−3
C2/mol
dm−3

D11/10
−9

m2 s−1
D12/10

−9

m2 s−1
D21/10

−9

m2 s−1
D22/10

−9

m2 s−1

0.300 0.250 0.1276 0.000 095 9.5 1.473
0.450 0.250 0.1271 0.000 139 9.2 1.468
0.600 0.250 0.1263 0.000 186 10.3 1.466
0.700 0.250 0.1261 0.000 207 9.9 1.462
1.000 0.250 0.1251 0.000 299 9.1 1.453
1.500 0.250 0.1232 0.000 432 8.9 1.437
2.500 0.250 0.1196 0.000 688 8.9 1.401
0.300 0.500 0.1225 0.000 064 13.7 1.477
0.450 0.500 0.1211 0.000 093 14.5 1.471
0.600 0.500 0.1191 0.000 124 14.5 1.469
1.000 0.500 0.1154 0.000 200 14.1 1.456
1.500 0.500 0.1105 0.000 293 13.9 1.440
2.500 0.500 0.1018 0.000 468 13.4 1.407
0.300 0.650 0.1199 0.000 059 18.7 1.482
0.450 0.650 0.1181 0.000 084 17.9 1.478
0.600 0.650 0.1156 0.000 112 17.0 1.474
0.800 0.650 0.1138 0.000 150 16.6 1.467
1.000 0.650 0.1114 0.000 185 16.1 1.462
1.200 0.650 0.1090 0.000 222 16.1 1.455
1.500 0.650 0.1058 0.000 276 17.3 1.444
0.300 0.900 0.1163 0.000 050 20.9 1.499
0.450 0.900 0.1138 0.000 079 20.6 1.489
0.600 0.900 0.1111 0.000 104 21.2 1.488
1.000 0.900 0.1054 0.000 169 21.7 1.473
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protein concentration in one of the two prepared solutions.
Hence, we will consider D12(C1, C2) and D21(C1, C2) only for
the experimental data at lysozyme concentrations of 0.60 mM
and higher. Nonetheless, it is important to remark that the
inclusion of the cross-diffusion data at low protein concen-
trations in our analysis does not produce appreciably different
results.

■ RESULTS
All our experimental results on the four ternary diffusion
coefficients in the solvent-fixed frame are reported in Table 1.
Note that the two main-diffusion coefficients (in the volume-
fixed frame) were discussed in our previous papers.45,58 The
determination of D̂12 from D12 requires ys and Dp data. On the
other hand, D̂21 can be determined by the direct extrapolation
of D21/D22 data to C1 = 0. In Table 2, we report the salt−water

thermodynamic factor, ys, as a function of C2. These data were
obtained by interpolation of available literature data.71,72 The
values of the lysozyme tracer-diffusion coefficient, Dp, as a
function of NaCl concentration are also reported in Table 2.
These were determined by extrapolating D11 to C1 = 0 at
constant C2.
According to the Stokes−Einstein equation, the observed

decrease of Dp as C2 increases is related to the corresponding
increase in the viscosity of the binary salt−water solution. If we
correct for salt viscosity,73 we obtain Dp = (0.1316 ± 0.0002) ×
10−9 m2 s−1 at C2 = 0. This corresponds to the equivalent
hydrodynamic radius of Rp = 1.864 nm based on the value of
0.8902 × 10−3 kg m−1 s−1 for water viscosity.74 The values of Dp
were also utilized together with the literature values of the salt
diffusion coefficient,71 Ds, to calculate the diffusion ratio α
relevant to eq 7b. Our results are also included in Table 2 as a
function of C2. Since the term in eq 7b containing α is relatively
small, we can assume that this parameter is a constant
independent of salt concentration. Thus, we set α = 0.083 equal
to the average of the data reported in Table 2.
Our ternary diffusion data in Table 1 together with the

transport and thermodynamic parameters in Table 2 can be
used to calculate the quotients C2D12/(2C1ysDp) and D21/D22.
In the limit of C1 = 0, these two quantities become D̂12 and D̂21,
respectively. To determine D̂12(C2) and D̂21(C2), we consider
the following linear expressions:

= − ̂C D y C D k C D( )/(2 ) (1 )s2 12 1 P 12 1 12 (8a)

= − ̂D D k C D/ (1 )21 22 21 1 21 (8b)

where k12 and k21 characterize the first-order effect of protein
concentration on the normalized cross-diffusion coefficients.
Relative to the experimental error, we will assume that these
two parameters are independent of salt concentration. The
dependence of D̂12 and D̂21 on salt concentration can be

described by the following linear functions within our
experimental range of salt concentrations:

̂ = +D a b C12 12 12 2 (9a)

̂ = +D a b C21 21 21 2 (9b)

Equations 9a and 9b are consistent with the assumption that
γ(C2) and λ(C2) are also described by corresponding linear
functions. Thus, we can write

γ γ γ= + ′C0
2 (10a)

λ λ λ= + ′C0
2 (10b)

Note that we have a12 = γ0 − λ0, b12 = γ′ − λ′, a21 = γ0 − αλ0,
and b21 = γ′ + V̅1 − αλ′ from eqs 7a and 7b. Figures 1 and 2

show the behavior of our normalized cross-diffusion
coefficients. This is described quite well by eqs 8a, 8b, 9a,
and 9b within the experimental concentration range. Based on
these equations, we apply the method of multiple linear least
squares to our normalized cross-diffusion coefficients with
protein concentrations of 0.60 mM or higher, as indicated in
the Experimental Section. The results of our fits are reported in
Table 3 together with the calculated values of γ0, γ′, λ0, and λ′.
Addition of our data at the two lower protein concentrations
leads to an increase of ≈20% in the standard error. However,
our fit results remain the same within one standard deviation.
From the values in Table 3, we can appreciate that γ and λ have
comparable magnitudes. Furthermore, we can calculate that αλ
is 7−8% of γ and 3−5% of of γ + V̅1C2 in eq 7b. Thus, as
previously mentioned, the contribution of λ to the behavior of
D̂21(C2) is marginal.
Interestingly, our extracted values of k12 and k21 reveal that

the quotients C2D12/(2C1ysDp) and D21/D22 at C1 = 0.60 mM
(8.6 g/L) are just 3 and 1% lower than D̂12 and D̂21,
respectively. Hence, we note that measurements of cross-
diffusion coefficients at this one protein concentration can be
directly utilized to calculate D̂12 and D̂21 within the
experimental error. Furthermore, if we consider the highest

Table 2. Transport and Thermodynamic Parameters

C2/mol dm
−3 ys Dp/10

−9 m2 s−1 α

0.250 0.915 0.1287 ± 0.0001a,b 0.0866
0.500 0.930 0.1258 ± 0.0002c 0.0840
0.650 0.943 0.1239 ± 0.0005c 0.0824
0.900 0.968 0.1208 ± 0.0004d 0.0800

aThe reported errors are standard deviations. bValue obtained from
linear and quadratic extrapolation. cValues obtained from quadratic
extrapolation. dValue obtained from linear extrapolation.

Figure 1. Normalized cross-diffusion coefficient, C2D12/(2C1ysDp), as
a function of C1 and C2 (solid circles). The gray planar surface
describes eqs 8a and 9a with the values of k12, a12, and b12 reported in
Table 3. The solid line at C1 = 0 describes D̂12 as a function of C2, and
its dashed linear extension indicates the value of a12. The four dashed
lines describe independent linear fits at constant C2, and the open
circles are the corresponding intercepts at C1 = 0.
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experimental concentration of C1 = 2.5 mM (36 g/L), the
corresponding two quotients become 13 and 5% lower than D̂12
and D̂21, respectively. Thus, the limiting values of D̂12 and D̂21
can be employed to estimate cross-diffusion coefficients for a
broad range of protein concentrations. Indeed, neglecting the
effect of C1 leads to an error of the order of 10%. On the other
hand, it is important to remark that D̂12 and D̂21 strongly
depend on salt concentration. Their behavior will be examined
in the Discussion.

■ DISCUSSION
This section is organized in three parts. In the first part, we
discuss salt osmotic diffusion as the consequence of protein−
salt thermodynamic interactions. It is important to mention
that the quotient D21/D22 has been previously discussed.51−55

In this paper, our refined examination of salt osmotic diffusion
will provide the starting point for examining protein
diffusiophoresis. In the second part, Stefan−Maxwell Equations,
we examine the behavior of the transport parameter, λ(C2).
Here, we will introduce the Stefan−Maxwell (S−M) equations
for the protein−salt−water system and characterize the
protein−salt S−M diffusion coefficient from our experimental
results. In the third part, Protein Diffusiophoresis, we will
examine the observed protein diffusiophoresis and relate its
behavior to protein charge, protein electrophoretic mobility,
and protein hydration.
Salt Osmotic Diffusion. As shown in Figure 3, D̂21 can be

described as a linear function of C2 with positive slope and

intercept. The observed behavior of D̂21(C2) can be examined
by considering the corresponding behavior of γ(C2). One
contribution to the value of γ ≅ μ12/μ22 is related to the
common-ion effect.52,53 The chemical potential of one ionic
solute increases as the concentration of the other ionic solute
increases due to the corresponding increase in the concen-
tration of the common ion (Cl− in our case). In the case of
proteins, this phenomenon is often illustrated by considering
the so-called Donnan equilibrium experiment. Here, we
consider the partitioning of salt ions (and water) occurring
between a binary salt−water solution and a ternary protein−
salt−water solution separated by a membrane not permeable to
the protein macro-ions. At equilibrium, the concentration of the
salt component will be higher in the binary solution due to the
common-ion effect. If the protein has a charge Zp, the common-
ion effect leads to γ = |Zp|/2 in the case of a 1:1 electrolyte such
as NaCl.57

The common-ion effect is expected to dominate at low salt
concentration. As the salt concentration increases, protein−salt
specific interactions become more important. From a
phenomenological point of view, the resulting effect on γ(C2)
can be examined by introducing a simple model based on the
assumption that a protein macromolecule with the surrounding
salt solution can be divided into two domains.57,75 The first
domain is represented by a macromolecule and its local salt−
water layer. This local domain is in chemical equilibrium with
the bulk surrounding domain, representing the salt−water
remaining solution. Since macromolecules interact with salt
ions and water molecules in their vicinity, the salt concentration
in the local domain is different from that of the unperturbed
bulk domain. If the salt concentration in the local domain is
lower than that of the bulk domain, preferential hydration of
the protein occurs. If we apply this two-domain model to a
neutral macromolecule, we can derive54,57,75 that γ = Nw(C2/
C0), where Nw is the excess number of water molecules in the
local domain compared to the bulk domain.
For a charged protein, we can add64 the common-ion

contribution to that of preferential hydration and write

γ =
| |

+ ̅
− ̅

≅
| |

+ ̅
Z

N V
C

C V

Z
N V C

2 1 2
p

w 0
2

2 2

p
w 0 2

(11)

where we have used C0V̅0 = 1 − C2V̅2, and V̅0 = 0.0181 dm3

mol−1 (see the Supporting Information) is the partial molar
volume of water. The values of the intercept, γ0, and slope, γ′,
reported in Table 3 can be used to determine Zp and Nw in eq

Figure 2. Normalized cross-diffusion coefficient, D21/D22, as a function
of C1 and C2 (solid circles). The gray planar surface describes eqs 8b
and 9b with the values of k21, a21, and b21 reported in Table 3. The
solid line at C1 = 0 describes D̂21 as a function of C2, and its dashed
linear extension indicates the value of a21. The four dashed lines
describe independent linear fits at constant C2, and the open circles are
the corresponding intercepts at C1 = 0.

Table 3. Fitting Parametersa

a12 0.203 ± 0.005 a21 3.6 ± 0.3
b12/mol dm

−3 0.52 ± 0.01 b21/mol dm
−3 12.4 ± 0.4

k12/10
−3 mol dm−3 0.050 ± 0.005 k21/mol dm

−3 0.020 ± 0.013
λ0 b 3.7 ± 0.4 γ0 d 3.9 ± 0.3
λ′ c/mol dm−3 1.8 ± 0.4 γ′ e/mol dm−3 2.4 ± 0.4

aThe reported errors are standard deviations. bλ0 = (a21 − a12)/(1 −
α). cλ′ = (b21 − V̅1 − b12)/(1 − α). dγ0 = (a21 − αa12)/(1 − α). eγ′ =
(b21 − V̅1 − αb12)/(1 − α).

Figure 3. Normalized osmotic-diffusion coefficient, D̂21, as a function
of C2 (solid circles). The solid curve describes the fit of the
experimental results. The calculated plot of D̂21(C2) described by the
approximated eq 12 (---) and that of γ(C2) (−−) are also shown.
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11, assuming that these parameters are constant. We obtain Zp

= 7.8 ± 0.6 and Nw = 130 ± 20.
We note that this value of Zp is lower than the titration value

of 11 (at pH 4.5).76 This result is consistent with the existence
of four anion binding sites as observed by X-ray diffraction.77,78

Furthermore, counterion binding is consistent with the
presence of a “Stern layer” surrounding the charged macro-
molecule, in which counterions are tightly bound to the particle
surface.79 Our analysis does not necessarily assume that the
protein charge is a constant independent of salt concentration.
It implies that a relatively strong counterion binding occurs at
ionic strengths significantly lower than those of our
experimental range. The weakening of the protein−counterion
electrostatic attraction at high ionic strengths and the saturation
of counterion sites should prevent counterion binding at high
salt concentrations. If a weak binding still occurs, its
contribution is incorporated in the Nw term. This prefer-
ential-hydration parameter should not be taken as the number
of water molecules bound to one protein molecule but as a
more general parameter, the thermodynamic excess of water,
describing the net preference of a protein macromolecule for
water molecules compared to salt ions. Thus, ion binding has
the effect of reducing the net value of Nw.

56,75

We now turn our attention back to the behavior of D̂21(C2).
If we neglect the contribution of αλ in eq 7b and consider eq
11, we can write

̂ ≈ | | + ̅ + ̅D Z V N V C/2 ( )21 p 1 w 0 2 (12)

To appreciate the accuracy of eq 12, Figure 3 shows the
behavior of D̂21(C2) based on eq 7b together with that obtained
by neglecting the contribution of αλ. For completeness, we
include the behavior of γ(C2) in Figure 3.
The intercept of D̂21 in Figure 3 approximately describes the

common-ion effect and the corresponding slope is approx-
imately equal to V̅1 + NwV̅0. We now note that V̅1 + NwV̅0 is
approximately the same as Vp + NwVw, where Vp and Vw are the
molar volumes of protein and surrounding water molecules,
respectively.80 Thus, the slope of D̂21 in eq 12 approximately
represents the volume per protein mole excluded to the salt
component in solution. This slope describes the previously
discussed25,53 excluded-volume effect.
Stefan−Maxwell Equations. To examine the behavior of

λ(C2), we introduce the frictional formalism based on the S−M
equations.35,36 These equations have the advantage, compared
to Fick’s law, of providing a clearer physical interpretation of
multicomponent diffusion processes, provided that all main
diffusing species have been identified. For a protein−salt−water
system, we consider the three ionic species, protein (p),
counterion (−), and co-ion (+), and the neutral solvent species,
water (w).
According to the S−M formalism, a diffusion process can be

thought to occur in a quasi-stationary regime in which the
driving forces equal the opposing frictional force caused by the
difference in diffusion velocities between species i and species j
(with i, j = p, +, −, w, and i ≠ j).81 The driving forces for ionic
diffusion are the electrochemical-potential gradients of the ionic
species, ∇μ̃i (with i = p, +, −). Following the theoretical work
of Krishna on multicomponent electrolyte systems,82 the S−M
relations become in our case
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where Ci is the molar concentration of the ionic species i (with i
= p, +, −, w), CT = Cw + C+ + C− + Cp is the total molar
concentration, and R is the ideal-gas constant. Note that Cw =
C0, Cp = C1, C+ = C2, and C− = |Zp|C1 + C2 is the common-ion
concentration. In eqs 13a−13c, the expression Ji/Ci − Jj/Cj
represents the difference in diffusion velocities between species
i and species j, and Jw = 0 if we apply the solvent-fixed frame.
The six Đij’s (with i, j = p, +, −, w, and i ≠ j) are the S−M
diffusion coefficients. The corresponding (RT/CT)Đij

−1 are
known as friction coefficients.81,82 These coefficients are
independent of the employed reference frame, and Đij

−1 has a
direct physical interpretation in terms of a friction coefficient
between the species i and j.83

In the limit of C1 = 0, (CT/Cw)Đpw becomes Dp(C2), the
tracer-diffusion coefficient of the protein, and 2ys(CT/Cw)-
(Đ+w

−1 + Đ−w
−1)−1 becomes Ds(C2), the solvent-fixed diffusion

coefficient for the binary salt−water system. In the limit of both
C1 = 0 and C2 = 0, we have Đpw = Dp, Đ+w = D+, and Đ−w = D−,
where Dp, D+, and D− are the tracer-diffusion coefficients in
water of the protein, co-ion, and counterion species,
respectively. We know84 that D+ = 1.33 × 10−9 m2 s−1 and
D− = 2.03 × 10−9 m2 s−1 at 25 °C for Na+ and Cl−, respectively.
At infinite dilution, the S−M relations reduce to the Nernst−
Planck equations:82,85

μ ψ− = ∇ + ∇J C D Z F RT( )/p p p p p (14a)

μ ψ− = ∇ + ∇+ + + +J C D F RT( )/ (14b)

μ ψ− = ∇ − ∇− − − −J C D F RT( )/ (14c)

where F is the Faraday constant. In eqs 14a−14c, we have
reported the explicit expressions of the electrochemical-
potential gradients of the ionic species in terms of the
corresponding gradients of chemical potentials and electrical
potential, ψ.
To obtain an expression for λ(C2), we start by considering

the following relations between chemical potentials of solute
components and ionic species:

μ μ μ∇ = ∇ + | |∇ −Z1 p p (15a)

μ μ μ∇ = ∇ + ∇+ −2 (15b)
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We first combine eqs 13a−13c according to eqs 15a and 15b
and eliminate ∇ψ in the resulting equations (see the
Supporting Information). We then replace the fluxes of the
ionic species with those of the solutes by applying the
electroneutrality condition:

= | | +− +J Z J Jp p (16)

with Jp = J1 and J+ = J2. In this way, we obtain expressions for
∇μ1 and ∇μ2 as a function of J1 and J2. These can be then
inverted to yield explicit expressions for J1 and J2. Comparison
with eqs 2a and 2b allows us to obtain expressions for the Lij
(with i, j = 1, 2) as a function of the S−M diffusion coefficients
(see the Supporting Information). If we then apply the
definition of λ, we finally obtain

λ τ τ= | | − ̂ ≅ | | − ̂ ̅+
−

+
−Z Đ C C Z Đ V C/p 12

1
2 0 p 12

1
0 2 (17)

where τi ≡ Điw/(Đ+w + Đ−w) (with i = +, − and τ+ + τ− = 1) is
the transference number of the salt ions,71 and Đ̂12 ≡ [(Đ+p

−1 +
Đ−p

−1)/(Đ+w
−1 + Đ−w

−1)]−1 is a normalized S−M diffusion
coefficient describing the protein−salt interaction. The term
Đ+p

−1 + Đ−p
−1 formally represents the total friction between

protein and salt ions.
The transference number, τ+, decreases about 3% within our

salt concentration range, and can be assumed constant.72 If we
also assume that Đ̂12 can be regarded as a constant, λ(C2)
becomes a linear function of salt concentration consistent with
our experimental findings (see Results). We can therefore
utilize the values of λ0 and λ′ reported in Table 3 to calculate
|Zp| and Đ̂12, respectively. If we set the value of τ+ equal to D+/
(D+ + D−) = 0.396,83 we calculate Zp = 9.3 ± 1.0. This value is
somewhat higher than that of 7.8 ± 0.6 obtained from the
intercept of γ(C2). Nonetheless, they appear to be still in
agreement within the experimental error.
We find that Đ̂12

−1 = −100 ± 20 is negative from the value of
the slope, λ′. To our knowledge, this is the first time that the
value of Đ̂12

−1 has been extracted for a protein−salt aqueous
system. Note that a negative value of Đ̂12

−1 is not consistent
with the friction interpretation of S−M diffusion coefficients.
To emphasize the relevance of this finding, we consider some
current equations used to predict Đij for mass-transfer
modeling. The predictive equation proposed by Wesselingh
and Krishna is Đij = (ĐiwĐjw)

1/2 (with i, j = p, +, − and i ≠
j).29,86 By setting Đpw = Dp, Đ+w = Đ+, and Đ−w = D−, we
estimate Đ̂12

−1 ≈ 3.5. Another predictive equation, Đij =
Đw0Đw0/Dw, has been recently proposed by Liu et al.,29 where
Dw = 2.30 × 10−9 m2 s−1 is the self-diffusion coefficient of
water.87 In this second case, we estimate Đ̂12

−1 ≈ 18. Both
estimates show that the value of Đ̂12

−1 is positive. We also note
that the estimated magnitudes of this coefficient are
significantly smaller than our determined value. We remark
that negative frictions were also observed for aqueous
poly(ethylene glycol), a neutral hydrophilic polymer, in the
presence of a neutral cosolvent.62 Thus, we cannot attribute this
result to the complexity of electrolyte systems.
The extraction of negative values of Đ̂12

−1 can be attributed
to the incorrect identification of the diffusing species. We
hypothesize protein hydration as the chief mechanism of the
observed result and the actual diffusing macromolecule is the
hydrated protein. If a macromolecule binds nw water molecules,
∇μ̃p in eq 13a should be replaced by ∇μ̃p + nw∇μ0, the
chemical potential of the hydrated protein, with μ0 being the
chemical potential of the solvent component, and C0∇μ0 =

−C1∇μ1 − C2∇μ2 (Gibbs−Duhem equation).88 Furthermore,
the solvent-fixed flux of free water species, Jw, is no longer zero
due to the condition J0 = Jw + nwJp = 0. If we consider protein
hydration as the only contribution to Đ̂12, we can obtain Đ̂12

−1

= −nw (see the Supporting Information).88 This is qualitatively
consistent with our findings and allow us to estimate that nw ≈
100.
The nw water molecules are tightly bound to protein sites and

are not exchangeable with salt ions.89 Note that this value of
lysozyme hydration is comparable to the excess of water, Nw,
extracted from eq 11. Although nw and Nw should be regarded
as independent entities, not directly related, these two
quantities bear obvious similarities.88 Thus, their similar values
corroborate the validity of our hypothesis that protein
hydration is the dominant mechanism responsible for the
observed value of Đ̂12

−1. We therefore conclude that the effect
of molecular hydration should be taken into account when
predictive equations for the Đij’s are applied to solvated
macromolecules.

Protein Diffusiophoresis. We start by examining the
relation of Đ̂12 to the protein charge, Zp. If we insert eqs 11 and
17 into eq 7a and consider the case of C2 = 0 (with C1/C2 = 0),
we derive

̂ =
| | −

+
− +

− +
D

Z D D
D D

(0)
212

p

(18)

Equation 18, which can be also obtained by applying the so-
called Nernst−Hartley equations,24,26 shows that protein
diffusiophoresis is driven by the difference in ionic mobilities,
D− − D+. If there is a difference in mobility between anion and
cation species, a salt concentration gradient generates a
corresponding internal gradient of electrical potential. If the
anion tends to diffuse faster than the cation (D− > D+), the
protein will diffuse toward lower salt concentration (D̂12 > 0) to
maintain electroneutrality.
If we assume that D̂12(0) = a12 (see eq 9a) and use the

known value of (D− − D+)/(D+ + D−) = 0.208,83 we can
calculate Zp = 1.95 ± 0.05 from eq 18. Note that this value of
Zp represents only about 20−25% of the charge values reported
above. This large discrepancy can be attributed to D̂12 not being
a linear function of C2 at low salt concentrations.
It is interesting to observe that even if we have extracted two

similar values of Zp from the γ(C2) and λ(C2), the
corresponding value extracted from D̂12 = γ(C2) − λ(C2) is
very different. This is related to γ and λ being of comparable
magnitude: even minor deviations of γ(C2) and λ(C2) from the
proposed linear behavior may significantly amplify when the
difference, γ − λ, is considered. This shows that models aimed
at deriving separate expressions of γ and λ are likely to yield
poor results in predicting D̂12. Indeed, considering models that
directly yield an expression for D̂12 should represent a better
approach.
We start to examine D̂12 at low salt concentration by

considering the similarities between diffusiophoresis and
electrophoresis.79,90 Protein electrophoresis is described by
considering the relation between the electrical-potential
gradient, ∇ψ, and the resulting electrophoretic migration
velocity, J1/C1:

ψ− = ∇J C u/1 1 p (19)

Note that J1 is defined with respect to the solvent-fixed frame
because ∇ψ does not act on the neutral solvent molecules. The
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proportionality constant, up, is the protein electrophoretic
mobility. An expression for the gradient of electrical potential
internally generated by the concentration gradient of ionic
species can be obtained by applying eq 16 to the Nernst−
Planck eqs 14a−14c. In the limit of C2 = 0 (with C1/C2 = 0),
we have

ψ− ∇ =
−
+

∇− +

− +

F
RT

D D
D D

C
C

2

2 (20)

The comparison of eq 18 with eq 20 allows us to appreciate
that 2RTD̂12(0)∇ ln C2 represents the electrical force, Zp F∇ψ,
felt by the charged protein molecule and responsible for
diffusiophoresis. If we substitute eq 20 into eq 19 and apply the
definition of D̂12, eq 18 becomes

̂ =
| | −

+
− +

− +
D

RT
F
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D
D D
D D

(0)
1
2

(0)
12

p

p (21)

The dependence of D̂12 on salt concentration can be examined
by examining the corresponding dependence of up.

33,91,92

According to the theory of electrophoresis, the value of |up|/Dp
is expected to dramatically drop as the solution ionic strength, I,
increases. This is related to the electrical double layer
surrounding charged particles in electrolyte solutions. The
behavior of up depends on the corresponding behavior of the
zeta potential, ζ, which is the electrical potential at the shear
interface between the diffusing particle and the surrounding
fluid. If the particle is treated as a dielectric sphere with
homogeneous surface charge, and we locate the shear interface
at the hydrodynamic radius of the protein, Rp, we have91,92

κ
λ

ζ=
RTu

FD
f R

R F
RT

( )p

p
elec p

p

B (22)

where κ ≡ (8000πNAλBI)
1/2 is the Debye constant, NA is

Avogadro’s number, and λB = 0.7151 nm is the Bjerrum length
for water at 298.15 K.93 Note that κ−1 describes the thickness of
the double layer, and κRp represents the relative size of the
particle compared κ−1. The function

= − −f x E x E x( ) 1.5 e [7.5 ( ) 3 ( )]x
elec 7 5

with En(x) = ∫ 1
∞ t−ne−xt dt was first introduced by Henry.92,94

The value of this function varies from felec(0) = 1 for a sphere at
zero ionic strength to felec(∞) = 1.5 for a planar surface.
Equation 22 ignores the effects of protein shape and surface

charge distribution. These effects have been investigated by
Allison and Tran on lysozyme as a function of pH.79 In this
investigation, the calculated protein electrophoretic mobility at
I = 0.15 M was found to be only about 5% lower than that
predicted for a sphere with homogeneous charge. Hence, the
effect of lysozyme shape and charge heterogeneity is not
predicted to be significant.
If the zeta potential is smaller than RT/F = 25.7 mV, the

linearized Poisson−Boltzmann equation can be applied,
yielding the following relation between ζ and the protein
charge, Zp:

91

ζ λ
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Z
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B

p p (23)

The value of Zp in eq 23 corresponds to the particle charge at
the shear interface. This interface is located slightly outside the

Stern layer. Thus, this charge value of Zp should be very close
to that of Zp in eq 11.
The behavior of the electrophoretic mobility as described by

eq 22 represents the contribution of the electrophoretic effect
to diffusiophoresis. Another phenomenon specific to diffusio-
phoresis is represented by the chemiphoretic effect.33,89,94 This
is related to the perturbation of the electrical double layer from
its equilibrium structure causing a salt concentration gradient.
Indeed, the double layer on the low C2 side of a particle is
slightly expanded compared to the double layer on the high C2
side. This brings about a pressure gradient along the direction
of ∇C2, which causes a particle to migrate from low to high salt
concentration. As we shall see below, the chemiphoretic effect
in the case of lysozyme is relatively small compared to the
corresponding electrophoretic effect.
The electrophoretic effect is expected to dominate the

behavior of lysozyme D̂12(C2) at low salt concentration. As in
the case of up, D̂12(C2) will sharply decrease as the ionic
strength increases. This nonlinear behavior qualitatively
explains the very low value of Zp obtained from a12 based on
linear extrapolation. As the salt concentration increases, the
contributions of protein hydration and preferential hydration
described by Nw and Đ̂12

−1 become relatively more important.
To take into account electrophoretic, chemiphoretic, and

hydration effects in the behavior of lysozyme D̂12(C2), we
modify eq 9a in the following way:
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where Rp = 1.864 nm is the hydrodynamic radius of lysozyme
calculated using the Stokes−Einstein equation (see Results).
According to eq 24, the net value of D̂12(C2) is the sum of three
terms. The first and second terms in the square brackets
describe the electrophorectic and chemiphoretic effects,
respectively. Note that the electrophoretic term is positive
because D− > D+ for lysozyme in the presence of NaCl, while
the chemiphoretic term is always negative independent of the
difference in ion mobilities. The function

= − +
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+ + − −

f x E x E x
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was given by Huan and Wei,94 and analytically describes the
effect of double layer thickness on the chemiphoretic
contribution. This effect was first described by Prieve and
Roman, who previously published numerical results equivalent
to the reported function.95 The value of this function varies
between fchem(0) = 0 for a sphere at zero ionic strength to
fchem(∞) = 1.5 for a planar surface. Note that eq 24 is
consistent with eq 18 because they coincide in the limit of C2 =
0. The third term is described by the slope b12′ and is related to
protein−salt specific interactions. This parameter replaces b12
of eq 9a.
We apply the method of nonlinear least squares to our

D̂12(C2) values in Figure 4. We obtain Zp = 7.4 ± 0.5 and b12′ /
V̅0 = 33 ± 1. This value of Zp was then inserted into eq 23 to
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calculate ζ for our experimental salt concentrations to verify
that ζ < 25.7 mV (see Table 4).

Figure 4 shows the behavior of D̂12(C2) obtained from our fit
based on eq 24. Moreover, the three contributions to the
expression of D̂12 taken separately are also shown. We can see
that the magnitude of the chemiphoretic term is small
compared to that of the electrophoretic term at any salt
concentration. We further observe that the electrophoretic term
is dominant at low salt concentrations (C2 < 0.2 mol dm−3),
while the b12′ term prevails at high salt concentrations.
The value of Zp extracted from eq 24 is now found to be in

good agreement with that obtained from eq 11. The value of
b12′ /V̅0 = 33 ± 1 is slightly higher than b12/V̅0 = 29 ± 1. This
small discrepancy has no effect on the interpretation of the
slopes associated with eqs 11 and 17. Indeed, taking into
account the electrophoretic effect seems critical for the
examination of D̂12(C2) but not for that of λ(C2). Thus, we
can still apply eqs 11 and 17 to eq 7a and write b12′ ≅ b12 =
V̅0(Nw + Đ̂12

−1) from the comparison with eq 9a. If we assume
that protein hydration represents the dominant contribution to
the value of Đ̂12

−1, we deduce that b12′ ≅ V̅0(Nw − nw). We can
interpret this result by considering that diffusiophoresis of
protein molecules from high to low salt concentration is driven
by protein preferential hydration (i.e., protein−salt repulsive
interactions) as described by the excess of water, Nw. However,
the effect of Nw on D̂12 is reduced by the fact the nw water
molecules in the protein hydration shell remain attached to the
macromolecule as diffusiophoresis occurs.
We can also use eq 24 to derive an expression for λ. Indeed,

if we insert eq 24 into eq 7a, eq 17 can be rewritten in the
following way:
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We finally observe that the value of Zp extracted from D̂12,
together with the values of Dp in Table 2, can be utilized to
estimate lysozyme electrophoretic mobility as a function of
ionic strength according to eqs 22 and 23. Our estimated
electrophoretic mobility can be then compared with literature
data obtained from electrophoresis measurements. The
experimental value of up = 6.34 × 10−9 m2 s−1 V−1 was
obtained from the classical electrophoresis experiments of
Beychok and Warner at 0 °C, pH 4.5, and 0.15 M ionic
strength.96 This experimental work has been an important
reference for several theoretical studies on protein electro-
phoresis.79 If we insert Zp = 7.4 and the lysozyme tracer-
diffusion coefficient into eq 22, we estimate up ≈ 12 × 10−9 m2

s−1 V−1 at the ionic strength of 0.15 M and 25 °C. The chief
effect of temperature on up can be taken into account by
considering the corresponding effect on water viscosity. Since
water viscosity increases by a factor of 2.01 when the
temperature is decreased from 25 to 0 °C,74 we calculate up
≈ 6 × 10−9 m2 s−1 V−1 at 0 °C. This estimate is in very good
agreement with the experimental literature value.

■ SUMMARY AND CONCLUSIONS

We have measured the four ternary diffusion coefficients for the
lysozyme−salt−water system as a function of protein and salt
concentrations. We have introduced two normalized cross-
diffusion coefficients, D̂12 ≡ limC1→0 [C2D12/(2ysC1Dp)] and D̂21

≡ limC1→0 (D21/Ds), describing protein diffusiophoresis and salt
osmotic diffusion respectively as a function of salt concen-
tration. The coefficient D̂21 is approximately a thermodynamic
quantity, related to the thermodynamic parameter γ ≡
−limC1→0 (∂m2/∂m1)μ2,T,p, while the coefficient D̂12 is given by
the difference between γ and the transport parameter λ ≡
−limC1→0 (L12/L11). The observed behavior of D̂21(C2) is
related to common-ion and excluded-volume effects. The
examination of γ as a function of C2 has led to determination of
the protein charge, Zp, and the excess of water, Nw. These two
parameters characterize water-mediated protein−salt thermo-
dynamic interactions.
Values of D̂12 and D̂21 were utilized not only to extract λ(C2)

but also Đ̂12, the normalized protein−salt S−M diffusion
coefficient. We find that that Đ̂12 is negative. This implies that it
is unphysical to describe solute−solute S−M diffusion
coefficients as friction coefficients. Our finding was explained
by considering the effect of protein hydration.
In relation to protein diffusiophoresis, we find that even

minor inaccuracies in the estimates of S−M diffusion
coefficients and values of preferential-interaction coefficients
can lead to large errors in the estimated value of D̂12. The
electrophoretic effect dominates the behavior of D̂12 at low salt
concentrations, while the contribution of protein−salt specific
interactions, described by Đ̂12 and Nw, prevail at high salt
concentrations. Our D̂12 results were also employed to
accurately estimate the value of lysozyme electrophoretic
mobility.

Figure 4. Normalized diffusiophoresis coefficient, D̂12, as a function of
C2 (solid circles). The solid curve describes the fit of the experimental
results according to eq 24. The three terms in eq 24 characterizing the
electrophoretic effect (− -−), the chemiphoretic effect (---), and
protein−salt specific interactions (− −) are also shown.

Table 4. Calculated Values of Zeta Potential

C2/mol dm
−3 κ−1/nm κRp ζ/mV

0.250 0.608 3.06 18
0.500 0.430 4.33 14
0.650 0.377 4.94 12
0.900 0.320 5.81 11
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This work represents the first accurate experimental
investigation reporting protein diffusiophoresis in aqueous salt
solution and a protein−salt S−M diffusion coefficient. It will
provide guidance for understanding and modeling the effect of
concentration gradients in protein−salt aqueous systems
relevant to diffusion-based mass-transfer technologies and
transport in living systems.
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