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Hydration and preferential hydration of macromolecules are two distinct properties of their

multicomponent aqueous solutions. We have experimentally investigated ternary diffusion in a

macromolecule–osmolyte–water system in order to characterize and compare these two

independent quantities and to experimentally establish their role on the phenomenon

of coupled diffusion. Specifically, we report the four diffusion coefficients for the

poly(ethylene glycol)–di(ethylene glycol)–water system at 25 1C using Rayleigh interferometry.

In this work, the molecular weight of poly(ethylene glycol) (PEG) is 200-fold higher than that

of di(ethylene glycol) (DEG). This ratio is comparable to that between proteins and low

molecular-weight osmolytes. This system has been selected because both solutes are neutral

hydrated species with similar chemical properties and very different size. Hence, the observed

behavior of coupled diffusion can be directly related to solute hydration and size ratio and is not

complicated by other factors such as ionic interactions usually encountered in protein systems.

Using our multicomponent diffusion coefficients, we have found that PEG hydration is slightly

smaller than its preferential hydration. The observed difference can be attributed to PEG–DEG

excluded-volume interactions. Our experimental results also enable us to reveal that Onsager

cross-transport coefficients are large and negative. This implies that this transport coefficient

should not be neglected in multicomponent-diffusion theoretical models even when ionic

interactions or chemical association between the solute species are absent. This work provides the

basis for understanding coupled diffusion in more complex aqueous systems such as those

containing charged proteins or nucleic acids in the presence of salts or osmolytes.

Introduction

Aqueous solutions containing macromolecules typically

contain other solutes such as salts, osmolytes and organic

solvents.1–6 These additives are necessary for modulating the

thermodynamic state (chemical potential) of macromolecules

in water so that processes such as crystallization,7,8 aggregation,9

conformational changes10–12 and enzymatic activity13 may be

either promoted or inhibited.

Another important aspect of macromolecular solutions is

their dynamic behavior in the presence of concentration

gradients. This is described by mutual-diffusion (or inter-

diffusion).14,15 Diffusion coefficients are employed for

modeling controlled release of macromolecular drugs,16 drying

behavior of polymers in mixed solvents,17 in vivo transport

processes involving biomacromolecules,18,19 protein

crystallization20 and mixing inside microfluidic devices.21

Clearly, additives also play a crucial role on the diffusion

properties of macromolecular aqueous mixtures. Interestingly,

they not only change the diffusion coefficients of macro-

molecules in solution but also introduce complexity in the

transport processes because additive diffusion is coupled to

that of the macromolecule.22–27

Macromolecular hydration, i.e. the number of water

molecules bound to a macromolecule, and preferential

hydration, i.e. the excess of water molecules surrounding a

macromolecule compared to bulk composition, are two

important quantities that shape the thermodynamic and diffusion

behavior of macromolecule–additive–water solutions.1–4

Although these two properties bear obvious similarities, they

should be regarded as independent entities, not directly

related.1 In this paper, we experimentally examine macro-

molecular hydration, preferential hydration and their distinct

roles on macromolecule–osmolyte coupled diffusion for a

model macromolecule–additive–water system.

For macromolecule (1) + additive (2) + water ternary

systems, diffusion is described by the extended Fick’s first

law:23

�J1 = D11rC1 + D12rC2 (1a)

�J2 = D21rC1 + D22rC2 (1b)

where C1 and C2 are the molar concentrations of macro-

molecule and additive respectively, J1 and J2 are the

corresponding molar fluxes, and the four Dij’s (with i, j = 1,2)
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are the multicomponent diffusion coefficients. Main-diffusion

coefficients, D11 and D22, describe the flux of macromolecule

and additive due to their own concentration gradients, while

cross-diffusion coefficients, D12 and D21, describe the flux of a

solute due to the concentration gradient of the other solute

and are responsible for coupled diffusion. Multicomponent

diffusion coefficients have been experimentally determined

for lysozyme, a positively-charged protein, in the presence

of chloride salts and neutral molecules as additives using

interferometric methods.25,26,28–31 These studies were then

extended to poly(ethylene glycol) with a molecular-weight

comparable to that of proteins in the presence of aqueous

potassium chloride.27

However, to our knowledge, no multicomponent diffusion

study has been previously performed on aqueous systems in

which both macromolecule and additive are neutral species.

Experimental investigations on this type of system are needed

because the corresponding observed behavior of coupled

diffusion can be directly related to hydration, preferential

hydration and size ratio between the two solutes, and is not

complicated by the presence of ionic interactions. Hence, we

report here multicomponent diffusion coefficients on the

poly(ethylene glycol)–di(ethylene glycol)–water ternary

system measured at 25 1C using Rayleigh interferometry.

Poly(ethylene glycol) is a hydrophilic nonionic polymer used

in many processes based on aqueous solutions, including the

partitioning and the precipitation of biomacromolecules from

aqueous systems and for drug-delivery applications.32–34

In our work, the molecular weight of poly(ethylene glycol)

(PEG, 20 kg mol�1) is about 200 times higher than that of

the osmolyte di(ethylene glycol) (DEG, 106 g mol�1). This

difference in molecular weight between PEG and DEG is

comparable with that between proteins and low molecular-

weight osmolytes.

Our goal is to use the four experimental diffusion

coefficients of a ternary system in which both solute compo-

nents are neutral species to characterize and compare

macromolecular hydration with preferential hydration. We

will also examine their distinct roles on the quotients:

(D12/D11)/C1 and (D21/D22)/C2, which are used to characterize

coupled diffusion. A theoretical basis on the relation of these

two properties with coupled diffusion has been previously

reported35 and is applied for the first time in this paper to

aqueous systems in which both macromolecule and additive

are neutral species.

We note that multicomponent diffusion studies have been

previously reported on ternary aqueous mixtures of

poly(ethylene glycol) pairs.36–39 However, the molecular

weights of the previously investigated polymers were at least

one order of magnitude lower than that of the PEG macro-

molecule in our work. Thus, our experimental results complement

previous diffusion data on binary40 and ternary36–39 aqueous

mixtures containing poly(ethylene glycol). Moreover, it is

important remark that our experimental conditions (chosen

system, compositions and experimental setup) has enabled us

to discuss general fundamental aspects related to macro-

molecular hydration, preferential hydration and coupled

diffusion that could not be examined in the aqueous mixtures

of ethylene-glycol oligomers previously investigated.

Theoretical background

In this section, we summarize the fundamental equations

needed for understanding and examining multicomponent

diffusion in the PEG–DEG–water ternary system.

Ternary diffusion coefficients in eqn (1a),(b) can be

described relative to different reference frames.41 In the

volume-fixed frame, the fluxes of the components of a ternary

system satisfy the condition: (J0)V �V0 + (J1)V �V1 + (J2)V
�V2 = 0; in the solvent-fixed frame, we have (J0)0 = 0. Here,

Ji and �Vi are the molar flux and partial molar volume of

component i, respectively. The subscript ‘‘V’’ denotes the

volume-fixed frame. The subscript ‘‘0’’ denotes the solvent

component when appended directly to a flux, and denotes the

solvent-fixed frame when appended outside the parentheses to

an already-subscripted flux or diffusion coefficient.

The solvent-fixed frame coefficients, (Dij)0, are related to

the volume-fixed frame coefficients (Dij)V by the following

relations:42,43

(D11)0 = (D11)V + [(C1/(1 � C1
�V1 � C2

�V2)]

� [ �V1 (D11)V + �V2 (D21)V] (2a)

(D12)0 = (D12)V + [(C1/(1 � C1
�V1 � C2

�V2)]

� [ �V1 (D12)V + �V2 (D22)V] (2b)

(D21)0 = (D21)V + [(C2/(1 � C1
�V1 � C2

�V2)]

� [ �V1 (D11)V + �V2 (D21)V] (2c)

(D22)0 = (D22)V + [(C2/(1 � C1
�V1 � C2

�V2)]

� [ �V1 (D12)V + �V2 (D22)V] (2d)

Linear laws of non-equilibrium thermodynamics in isothermal

conditions can be used to obtain a relation between

solvent-frame diffusion coefficients and solute chemical

potentials, mi:
42–44

(D11)0 = (L11)0 m
(c)
11 + (L12)0 m

(c)
21 (3a)

(D12)0 = (L11)0 m
(c)
12 + (L12)0 m

(c)
22 (3b)

(D21)0 = (L21)0 m
(c)
11 + (L22)0 m

(c)
21 (3c)

(D22)0 = (L21)0 m
(c)
12 + (L22)0 m

(c)
22 (3d)

where (Lij)0 are the Onsager transport coefficients in

the solvent-fixed frame, m(c)ij � (qmi/qCj)T,p,Ck,kaj are the

molarity-based chemical-potential derivatives, T is the

temperature and p the pressure. The (Lij)0 matrix is symmetric

and (L12)0 = (L21)0 represents the Onsager reciprocal

relation.45,46

We note that volume-frame diffusion coefficients are

obtained experimentally.41 However, solvent-frame diffusion

coefficients are more directly related to solute chemical

potentials. Hence, eqn (2a)–(d) are often used to convert the

experimentally obtained (Dij)V into (Dij)0.

The thermodynamics of macromolecule-additive-solvent

ternary mixtures is often described using molality-based

chemical-potential derivatives: m(m)
ij � (qmi/qmj)T,p,mk,kaj,

where mj is the molality of the j-th solute component.1,2,47,48

The m(m)
ij matrix is symmetric and m(m)

12 = m(m)
21 represents the
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Euler reciprocal relation.49 The m(m)
ij are related to the m(c)ij by

the following linear relations:46

(C1/m1)(1 � C1
�V1 � C2

�V2)m
(c)
11

= (1 � C2
�V2)m

(m)
11 + C2

�V1m
(m)
12 (4a)

(C1/m1)(1 � C1
�V1 � C2

�V2)m
(c)
12

= (1 � C1
�V1)m

(m)
12 + C1

�V2m
(m)
11 (4b)

(C2/m2)(1 � C1
�V1 � C2

�V2)m
(c)
21

= (1 � C2
�V2)m

(m)
21 + C2

�V1m
(m)
22 (4c)

(C2/m2)(1 � C1
�V1 � C2

�V2)m
(c)
22

= (1 � C1
�V1)m

(m)
22 + C1

�V2m
(m)
21 (4d)

Eqn (3a)–(d) and eqn (4a)–(d) can be combined together

yielding the following expression for m(m)
12 /m

(m)
22 :

27

Eqn (5) can be used to extract the thermodynamic

parameter (m(m)
12 /m

(m)
22 ) provided that (m(m)

11 /m
(m)
22 ) is known with

reasonable accuracy. Values of (m(m)
12 /m

(m)
22 ) have been

extracted from ternary diffusion coefficients of macro-

molecule–salt–water mixtures at low concentration of macro-

molecules.27–31 For these systems, the term containing

(m(m)
11 /m

(m)
22 ) in eqn (5) is relatively small and the accuracy of

(m(m)
11 /m

(m)
22 ) need not be high. Adequate estimates of

(m(m)
11 /m

(m)
22 ) can be obtained by setting m(m)

11 = RT/m1 and

calculating m(m)
22 from available activity-coefficient data for

the additive–solvent binary system. If available, accurate

values of m(m)
11 can be obtained from light-scattering or

osmotic-pressure data on macromolecular solutions. The

values of (m(m)
12 /m

(m)
22 ) can be then used to quantitatively

characterize the preferential interaction of macromolecule

with either the solvent or the additive. We will use our

experimental ternary diffusion coefficients of the

PEG–DEG–water system to extract (m(m)
12 /m

(m)
22 ) as a function

of C2. This quantity will be used to characterize PEG

preferential hydration in the presence of DEG.

Onsager transport coefficients may be also extracted from

the (Dij)0, provided that the chemical-potential derivatives are

known.28 In this paper, we shall examine the ratio

(L12)0/(L11)0. In this way, explicit dependence of (L12)0 and

(L11)0 on macromolecule hydrodynamic radius and solution

viscosity is removed since (L12)0 and (L11)0 are both

directly proportional to the tracer diffusion coefficient of the

macromolecule.35 The following expression for (L12)0/(L11)0
can be obtained by solving eqn (3a),(b):

ðL12Þ0
ðL11Þ0

¼ ðm
ðcÞ
11 =m

ðcÞ
22 Þ½ðD12Þ0=ðD11Þ0� � ðm

ðcÞ
12 =m

ðcÞ
22 Þ

1� ðmðcÞ21 =m
ðcÞ
22 Þ½ðD12Þ0=ðD11Þ0�

ð6Þ

where:

mðcÞ11
mðcÞ22
¼ ð1� C2

�V2ÞðmðmÞ11 =m
ðmÞ
22 Þ þ C2

�V1ðmðmÞ12 =m
ðmÞ
22 Þ

ð1� C1
�V1Þ þ C1

�V2ðmðmÞ12 =m
ðmÞ
22 Þ

ð7aÞ

mðcÞ12
mðcÞ22
¼ ð1� C1

�V1ÞðmðmÞ12 =m
ðmÞ
22 Þ þ C1

�V2ðmðmÞ11 =m
ðmÞ
22 Þ

ð1� C1
�V1Þ þ C1

�V2ðmðmÞ12 =m
ðmÞ
22 Þ

ð7bÞ

mðcÞ21
mðcÞ22
¼ ð1� C2

�V2ÞðmðmÞ12 =m
ðmÞ
22 Þ þ C2

�V1

ð1� C1
�V1Þ þ C1

�V2ðmðmÞ12 =m
ðmÞ
22 Þ

ð7cÞ

according to eqn (4a)–(d). Eqn (6) can be used to extrapolate

(L12)0/(L11)0 provided that both (m(m)
12 /m

(m)
22 ) and (m(m)

11 /m
(m)
22 ) are

known. We will use our experimental (D12)0/(D11)0 to extract

(L12)0/(L11)0 as a function of C2 and examine our results. This

quantity will be used to characterize PEG hydration.

Materials and methods

Materials

Poly(ethylene glycol) with average molecular weight of

20 kg mol�1 (PEG) was purchased from Fluka and used

without further purification. Diethylene glycol (DEG)

(ReagentPlus, 99%) was purchased from Sigma-Aldrich and

used without further purification. The molecular weight of

PEG was taken as 20 000 g mol�1, and its density as 1.3 g cm�3

for buoyancy corrections. The molecular weight of DEG was

taken as 106.12 g mol�1, and its density as 1.114 g cm�3 for

buoyancy corrections. Deionized water was passed through a

four-stage Millipore filter system to provide high-purity water

for all the experiments.

All solutions were prepared by weight using a Mettler-Toledo

AT400 analytical balance, with appropriate buoyancy corrections.

Stock solutions of PEG andDEGwere made by weight to 0.1 mg.

Density measurements were made on the stock solutions for

buoyancy corrections. For binary PEG–water and DEG–water

experiments, precise masses of stock solutions were diluted with

pure water to reach the final target solute concentrations. For

ternary PEG–DEG–water solutions, precise masses of both stock

solutions were added to flasks and diluted with pure water to reach

the final target PEG and DEG concentrations. The densities of

these solutions were measured to determine the corresponding

molar concentrations and to calculate partial molar volumes.43 All

density measurements were made using a computer-interfaced

Mettler-Paar DMA40 density meter, thermostated with water

from a large, well-regulated (�0.01 1C) water bath.

Diffusion experiments

Binary and ternary mutual diffusion coefficients were

measured at 25.00 1C with the Gosting diffusiometer operating

mðmÞ12

mðmÞ22

¼ ðD21Þ0ð1� C1
�V1Þ � ðD22Þ0C2

�V1 � ðmðmÞ11 =m
ðmÞ
22 Þ½ðD12Þ0ð1� C2

�V2Þ � ðD11Þ0C1
�V2�

ðD22Þ0ð1� C2
�V2Þ � ðD11Þ0ð1� C1

�V1Þ þ ðD12Þ0C2
�V1 � ðD21Þ0C1

�V2

ð5Þ
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in the Rayleigh interferometric optical mode.25,50,51 The

refractive-index profile inside a diffusion cell is measured as

described in ref. 25 and references therein. Fifty refractive-

index profiles were obtained during the course of each

experiment. Experiments were performed by the free-diffusion

method in a 10-cm vertical diffusion cell with a 2.5 cm

horizontal optical path length and a 0.3 cm width. The

temperature was regulated to �0.001 1C precision and

�0.01 1C accuracy. Initial step-function distributions of solute

concentrations were prepared with the boundary located at the

center of the cell. Initial imperfections from the ideal sharp

boundary are removed as described in ref. 50 and references

therein. All experimental data were obtained before detectable

concentration changes occurred at the top and bottom ends of

the cell, consistent with the free-diffusion boundary condition.

A minimum of two experiments is required for determining the

four diffusion coefficients at a given set of mean concentrations

( �C1, �C2 in Table 1). These two experiments must have different

combinations of solute concentration differences across

the diffusion boundary. To verify reproducibility, two other

duplicate experiments were performed at each set of mean

concentrations. The volume-frame diffusion coefficients (Dij)V
were obtained by applying the method of the non-linear least

squares as described ref. 51. Due to PEG polydispersity, a

small correction was applied to the fringe positions as

described in ref. 52 in details. Experimental details related

to individual ternary diffusion experiments and binary

experiments on the DEG–water system are available as ESI.w

Results

In this section, we first describe our experimental diffusion

coefficients for the PEG(1)–DEG(2)–water(0) system and

then use solvent-frame diffusion coefficients to calculate

m(m)
12 /m

(m)
22 and (L12)0/(L11)0.

Diffusion coefficients

In Table 1, we report the experimental volume-frame diffusion

coefficients (Dij)V obtained at 298.15 K for the ternary

PEG(1)–DEG(2)–water(0) system at six mean DEG

concentrations �C2 = 0.10, 0.20, 0.50, 1.00, 1.99 and 3.93 M,

and the same mean PEG concentration of �C1 = 0.25 mM. We

observe that �C1 falls inside the dilute-solution regime for PEG

with a molecular weight of 20 kg mol�1. In Table 1, we also

report the mean-composition density, r, and the partial molar

volumes: �V1, �V2 and �V0, obtained from density measurements.43

The �Vi were used to calculate the solvent-frame diffusion

coefficients (Dij)0 from the (Dij)V’s using eqn (2a)–(d).

In Fig. 1a–d, we illustrate the behavior of the four (Dij)V as a

function of DEG concentration. In Fig. 1a, we show that

(D11)V decreases as C2 increases. At C2 = 3.9 M, (D11)V
becomes 34% of its binary value. The value of (D11)V is

proportional to the tracer diffusion coefficient of the macro-

molecules,D1*. We note that changes in DEG–water viscosity,

Z, and hydrodynamic radius of the macromolecule, Rh,

contribute to the isothermal dependence of the PEG tracer

diffusion coefficient on C2, according to the Stokes–Einstein

equation, D1* = kBT/(6pZRh), where kB is the Boltzmann

constant.47 Using available viscosity data on the DEG–water

binary system,53 we calculate that (1/Z) at C2 = 3.9 M

becomes 30% of its value in water. Thus the viscosity change

can be regarded as the main cause for the observed decrease in

(D11)V. The residual dependence of (D11)V Z on C2 is consistent

with a reduction of Rh describing a contraction of PEG

macromolecules in the presence of DEG.

In Fig. 1b, we show the behavior of the DEGmain-diffusion

coefficient (D22)V (solid circles). In the same Figure, we also

include the corresponding binary diffusion coefficients, (D2)V,

determined by us (open circles) and the fitted literature data40

(dashed curve). We can see that our binary measurements are

in excellent agreement with literature data. Moreover, ternary

(D22)V are slightly lower (2%) than the corresponding binary

(D2)V, and share exactly their same dependence on C2. We can

describe the small difference between (D22)V and (D2)V by

(D22)V = (1 � kf)(D2)V, where f = �C1
�V1 is the polymer

volume fraction and k is a constant factor that characterizes a

small obstruction effect of the PEG macromolecules on the

motion of DEG molecules. For aqueous DEG in the presence

Table 1 Ternary diffusion coefficients for the PEG–DEG–H2O system at 25 1C

�C1/mM 0.2500 0.2500 0.2500 0.2500 0.2499 0.2492 0.2456
�C2/M 0.0000 0.1000 0.2000 0.5001 0.9997 1.9938 3.9298
r/g cm�3 0.997840 0.999269 1.000698 1.004966 1.012292 1.027018 1.055210
�V0/M

�1 0.01807 0.01805 0.01806 0.01805 0.01805 0.01806 0.01804
�V1/M

�1 16.7 16.8 16.7 16.6 16.7 16.6 16.8
�V2/M

�1 — 0.0921 0.0913 0.0922 0.0920 0.0917 0.0919
(D11)V/10

�9 m2 s�1 0.06116 �
0.00006

0.05941 �
0.00006

0.05800 �
0.00006

0.05337 �
0.00010

0.04663 �
0.00010

0.03588 �
0.00010

0.02108 �
0.00040

(D12)V/10
�9 m2 s�1 — 0.000026 �

0.000002
0.000028 �
0.000001

0.000027 �
0.000002

0.000026 �
0.000002

0.000023 �
0.000002

0.000016 �
0.000002

(D21)V/10
�9 m2 s�1 0 3.2 � 0.2 6.8 � 0.2 13.5 � 0.2 25.0 � 0.2 40.3 � 0.2 49.6 � 0.6

(D22)V/10
�9 m2 s�1 — 0.869 � 0.001 0.857 � 0.001 0.827 � 0.001 0.777 � 0.001 0.684 � 0.001 0.511 � 0.002

(D11)0/10
�9 m2 s�1 0.06142 0.05974 0.05841 0.05393 0.04748 0.03720 0.02298

(D12)0/10
�9 m2 s�1 — 3.3 7.1 14.6 28.4 50.8 80.0

(D21)0/10
�9 m2 s 0 0.000046 0.000048 0.000047 0.000046 0.000043 0.000035

(D22)0/10
�9 m2 s — 0.877 0.873 0.867 0.857 0.839 0.804

m2m
(m)
22 /RT 1.000 1.007 1.013 1.032 1.060 1.107 1.142

(m(m)
12 /m

(m)
22 ) 0 2.3 � 0.3 5.1 � 0.3 9.4 � 0.3 18.9 � 0.3 34.6 � 0.3 53.2 � 1.2

(L12)0/(L11)0 0 �1.9 � 0.3 �4.3 � 0.3 �7.3 � 0.3 �14.6 � 0.4 �26.0 � 0.5 �34.9 � 2.0

8926 | Phys. Chem. Chem. Phys., 2009, 11, 8923–8932 This journal is �c the Owner Societies 2009



of PEG, we obtain k = 5.0 � 0.2 by fitting the experimental

(D22)V using the available expression of (D2)V (dashed curve

in Fig. 1b) and our experimental PEG volume fraction of

f = 0.0042. For aqueous KCl in the presence of PEG, we

have previously obtained k = 4.0 � 0.2 at the same PEG

volume fraction.27 We therefore conclude that the obstruction

effect of PEG on the motion of KCl ions is smaller than that

on DEG molecules. Since the obstruction effect is expected to

increase as the size of the additive increases, our experimental

results are consistent with the hydrodynamic radius of DEG

being larger than that of K+ and Cl� ions.

In Fig. 1(c,d), we show the behavior of the two cross-diffusion

coefficients (D12)V and (D21)V. We can see that (D12)V is positive

and decreases as C2 increases. A positive value of (D12)V implies

that, at uniform PEG concentration, the PEG macromolecules

diffuse from high to low DEG concentration. Because (D12)V is

also proportional to the PEG tracer diffusion coefficient,35,36 the

observed decrease in (D12)V can be partially attributed to the

corresponding viscosity increase. In Fig. 1d, we show that (D21)V
is positive and increases withC2. We note that the value of (D21)V
must approach zero at C2 = 0. This occurs because the

corresponding flux of DEG becomes zero, independent of PEG

concentration gradient. A positive value of (D21)V implies that

DEG diffuses from high to low PEG concentration in the

presence of uniform DEG concentration. The positive values

of both cross-diffusion coefficients indicate the presence of net

repulsive interactions between PEG and DEG in water. Our

results are consistent with previous multicomponent diffusion

studies on ternary aqueous mixtures of ethylene-glycol

oligomers.36–39 We will further discuss the experimental behavior

of our cross-diffusion coefficients after the determination and

examination of m(m)12 /m
(m)
22 and (L12)0/(L11)0.

Determination of l(m)
12 /l

(m)
22 and (L12)0/(L11)0

In Table 1, we report the values of m(m)
12 /m

(m)
22 as a function of DEG

concentration calculated using eqn (5). We can see that

m(m)12 /m
(m)
22 is positive at all ternary compositions. Indeed, its value

increases as C2 increases starting from m(m)12 /m
(m)
22 = 0 at C2 = 0.

In Table 1, we also include the values of m2m
(m)
22 /RT used in

eqn (5), where R is the ideal-gas constant. The quantity m(m)22 , was

assumed to be equal to the corresponding chemical-potential

derivative of the DEG–water binary system at the same m2. The

values of m2m
(m)
22 /RT were calculated using the Van Laar coeffi-

cients taken from ref. 40. Technical details are given as ESI.w
These estimates of m(m)

22 can be considered accurate because PEG

concentration is low in the ternary system. Indeed the DEG

main-diffusion coefficient, (D22)V, which is essentially directly

proportional to m(m)22 , is only 2% lower than the corresponding

binary value within our experimental concentration ranges.

Furthermore, this small difference is nearly independent of

DEG concentration and can be entirely attributed to obstruction

effects as described above.

Values for m(m)
12 /m

(m)
22 were calculated by assuming that

m1m
(m)
11 /RT = 1.38, independent of m2. This value was obtained

from available light-scattering and isopiestic data on the PEG-

water binary system.54 Technical details are given as ESI.w For
comparison, we have also calculated m(m)

12 /m
(m)
22 by assuming

ideal behavior with respect to PEG, i.e. m1m
(m)
11 /RT = 1. We

found that they coincide with those reported in Table 1.

Indeed, numerical examination shows that m(m)
12 /m

(m)
22 is

independent of the chosen value of m1m
(m)
11 /RT within the

experimental error provided that 0.6 o m1m
(m)
11 /RT o 2.5.

Thus, large errors on the estimation of m(m)
11 have a negligible

effect on the extracted value of m(m)
12 /m

(m)
22 . This finding is a

Fig. 1 Volume-fixed diffusion coefficients as functions of DEG concentration, C2, for the PEG–DEG–H2O system at C1 = 0.25 mM and 25 1C:

(a) (D11)V; (b) (D22)V; (c) (D12)V; (d) (D21)V. The solid curves are fits through the ternary experimental points. The dashed curve (data points

omitted) was fit through the binary DEG diffusion coefficients taken from ref. 40. The open circles are our measured binary values.
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consequence of the fact that the term multiplying m(m)
11 /m

(m)
22 in

eqn (5) is small.

In Table 1, we finally report the values of (L12)0/(L11)0 as a

function of DEG concentration calculated using eqn (6).

We can see that (L12)0/(L11)0 is negative at all ternary

compositions. Its value decreases as C2 increases starting from

(L12)0/(L11)0 = 0 at C2 = 0. We further notice that the values

of �(L12)0/(L11)0 are of the same order of magnitude as those

of m(m)
12 /m

(m)
22 . It is important to remark that negative values of

(L12)0/(L11)0 have been previously obtained for both lysozyme

and PEG in aqueous salt solutions.25,27 Our results on the

PEG–DEG–water systems allow us to conclude that large

negative values of this transport coefficient can be also

obtained for ternary systems in which all components are

neutral species. This implies that (L12)0 should not be

neglected in multicomponent-diffusion theoretical models on

non-associating solutes even in the absence of ionic interactions.

To examine the effect of m(m)
11 /m

(m)
22 on the calculated values

of the transport-coefficient ratio, we have also calculated

(L12)0/(L11)0 by assuming that m1m
(m)
11 /RT = 1. We have

found that this ideal-solution approximation produces a

relative error that is 19% at the highest experimental

DEG concentration and reduces to 7% at C2 = 0.1 M. We

further observe that the effect of m(m)
11 /m

(m)
22 on (L12)0/(L11)0

becomes negligible when the magnitude of [(D12)0/(D11)0]/C1 is

small compared to m(c)12/(C1m
(c)
11) in eqn (6). Indeed, in the

limit of [(D12)0/(D11)0]/C1 = 0, the ratio (L12)0/(L11)0 becomes

independent of (m(c)11/m
(c)
22) and equal to �(m(c)12/m

(c)
22). Although

[(D12)0/(D11)0]/C1 is small for our system, its contribution

to (L12)0/(L11)0 cannot be neglected, especially at the

highest experimental C2 values. Here the accuracy of (m(c)11/m
(c)
22)

on the calculated value of (L12)0/(L11)0 becomes more

important. However, our estimation of (m(c)11/m
(c)
22), which is

based on m(m)
11 of the PEG–water binary system, is less

reliable at high DEG concentrations because we are

neglecting the dependence of m(m)
11 on DEG concentration.

Thus, our procedure will yield accurate results only for the

limiting value of the quotient [(L12)0/(L11)0]/C2 at C2 = 0.

In Fig. 2, we plot both m(m)
12 /m

(m)
22 and (L12)0/(L11)0 as

a function of C2. We fit both sets of data to the function:

aC2(1 � bC2), where a and b are the parameters to which

the method of least squares is applied (see least-square results

in Fig. 2 caption). At C2 = 0, we obtain: [m(m)
12 /m

(m)
22 ]/C2 =

(21.0 � 0.3) M�1 and [(L12)0/(L11)0]/C2 = �(16.7 � 0.4) M�1,

where the reported errors are standard deviations obtained

from the fits. For comparison, we have calculated that a

7.6% higher value of |(L12)0/(L11)0|/C2 is obtained using the

ideal-solution approximation: m1m
(m)
11 /RT = 1.

Discussion

In this section, we will first examine our results on m(m)
12 /m

(m)
22 and

(L12)0/(L11)0 and their relation to macromolecular hydration and

preferential hydration. We will then discuss their role on the

behavior of the two cross-diffusion coefficients.

Examination of l(m)
12 /l

(m)
22

In the limit of small C1, the thermodynamic ratio, �m(m)
12 /m

(m)
22 ,

is the preferential-interaction coefficient:55–57

G12 � lim
C1!0

@m2

@m1

� �
m2

¼ � lim
C1!0

mðmÞ12

mðmÞ22

ð8Þ

The preferential-interaction coefficient characterizes the

macromolecule-osmolyte thermodynamic interactions. This

coefficient is linked to preferential hydration by a model based

on the existence of two domains.2,48 The first domain is

represented by the water-osmolyte layers surrounding the

macromolecules. This local domain is in chemical equilibrium

with a bulk domain, representing the water-osmolyte remaining

solution. Since macromolecules interact with the osmolyte and

water molecules in their vicinity, the concentration of osmolyte

in the local domain is different from that of the unperturbed

bulk domain. If the osmolyte concentration in the local

domain is lower than that of the bulk domain, preferential

solvation of the macromolecule occurs. In this case, the

preferential-interaction coefficient is negative. On the other

hand, a positive value of this coefficient is obtained if the

macromolecule preferentially interacts with the osmolyte. To

describe the chemical equilibrium between the local domain and

the bulk unperturbed domain we can introduce the partitioning

constant

a ¼ ðN2=N0Þ
ðm2=m0Þ

ð9Þ

where m0 = 55.51 mol kg�1, N2 and N0 are respectively the

number of osmolyte and water molecules of one macro-

molecular layer. When a o 1, the osmolyte is preferentially

excluded from the macromolecule domains. On the other hand,

when a 4 1, the osmolyte preferentially interacts with the PEG

molecules. By considering chemical equilibrium between the

two domains and applying Gibbs–Duhem equations,2 it can be

shown that

G12 ¼ �Nex
0

m2

m0
ð10Þ

Fig. 2 Thermodynamic ratio, m(m)
12 /m

(m)
22 (circles), and transport-

coefficient ratio, (L12)0/(L11)0 (squares), as a function of DEG

concentration, C2, for the PEG–DEG–H2O system. The solid curves

a fits through the experimental points performed using aC2(1 � bC2).

We obtain a = (21.0 � 0.3) M�1 and b = (0.089 � 0.005) M�1 for the

m(m)
12 /m

(m)
22 data, and a = �(16.7 � 0.4) M�1 and b = (0.117 � 0.009)

M�1 for the (L12)0/(L11)0 data.
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where Nex
0 � N0(1 � a) is the excess (or deficit) number of

solvents in the local domain of the macromolecule. We note

that eqn (10) can only be used to extract Nex
0 and not the

individual values of N0 and a. In practice, the value of N0 can

be assigned on the basis of assumptions. For preferentially

solvated macromolecules, it can be assumed that osmolyte

molecules are completely excluded from the local domain by

setting a=0 andN0 =Nex
0 . In this way, there is a clear analogy

between N0 and the actual amount of solvent bound to a

macromolecule. Nonetheless, it is important to remark that

no direct link exists between these two quantities. In general, we

should regard N0 as just a useful model-based property that

describes the net thermodynamic effect of the osmolyte on the

chemical potential of a macromolecule in solution.58

Our extracted values of m(m)
12 /m

(m)
22 are positive thereby

implying that PEG is preferentially hydrated as expected.

We calculate N0 as a function of C2 by applying eqn (12) with

a = 0 and G12 = �m(m)
12 /m

(m)
22 . At C2 = 0, we use the value of

[m(m)
12 /m

(m)
22 ]/C2from the fit to calculate N0 = 1160 � 20. This

corresponds to an excess of 2.6 water molecules per PEG

monomeric units. Our results, which are shown in Fig. 3, reveal

that N0 decreases as C2 increases, becoming 42% of the limiting

value at the highest experimental DEG concentration. The

observed decrease in N0 can be explained by considering the

osmotic stress59 on the deformable macromolecule induced by

the osmolyte. If DEG molecules are sterically excluded from the

PEG local domain, an increase in DEG concentration favors

PEG conformers that are relatively more compact and release

local water to the bulk domain. This explanation is consistent

with a corresponding reduction of PEG hydrodynamic radius.

Examination of (L12)0/(L11)0

The physical meaning of transport-coefficient ratio, (L12)0/(L11)0,

can be examined starting from the frictional-coefficient

formulation of diffusion developed by Bearman.60 Within this

approach, a diffusion process is thought to occur in a

quasi-stationary regime in which the thermodynamic driving

forces equal the opposing frictional forces between component

pairs. Based on frictional forces, the following linear laws for

diffusion can be written for a ternary system:35

�C1rm1 = z10C0(J1)0 + z12 [C2(J1)0 � C1(J2)0] (11a)

�C2rm2 = z20C0(J2)0 + z21 [C1(J2)0 � C2(J1)0] (11b)

where zij = zji (with i,j = 0,1,2 and i a j) are coefficients

describing the frictional force between component i and

component j. Eqn (11a),(b) are equivalent to resistance based

equations previously reported by Onsager61 and to the

Stefan–Maxwell equations.62 It is important to remark that

zij are frame independent and have a direct physical inter-

pretation in terms of friction between the diffusing species

inside the system.63

The ratio (L12)0/(L11)0 is related to the zij by the following

equation:23,35

ðL12Þ0
ðL11Þ0

¼ C2
z12

C0z20 þ C1z12
ð12Þ

Since frictional coefficients are positive quantities, the ratio

(L12)0/(L11)0 is also expected to be positive according to

eqn (12). This is inconsistent with our experimental findings.

It has been recently shown that negative values of

(L12)0/(L11)0 can be observed if the frictional-coefficient

formalism is applied to solvated solutes, which are the actual

diffusing species in solution.35 Due to solvent binding, the

chemical potentials of the solvated solutes are m̂1 = m1 + n1m0
and m̂2 = m2 + n2m0, where ni is the number of solvent

molecules bound to solute i. We can therefore rewrite

eqn (11a),(b) in terms related to the solvated solutes:

�C1rm̂1 = ẑ10 Ĉ0 (J1)0̂ + ẑ12 [C2(J1)0̂–C1(J2)0̂ (13a)

�C2rm̂2 = ẑ20 Ĉ0 (J2)0̂ + ẑ21 [C1(J2)0̂–C2(J1)0̂ (13b)

where ẑ10 = ẑ01 and ẑ20 = ẑ02 describes the frictional force

between solvated solutes and free solvent, and ẑ12 = ẑ21 that
between the two solvated solutes. The quantity �C0 =

C0 � n1C1 � n2C2 is the concentration of free solvent and

the subscript ‘‘0’’ denotes that the fluxes are defined with

respect to the free solvent frame of reference. The ẑij are

related to the ij by the following equations:35

z10 ¼
ðC0 � n2C2Þẑ10 þ n1C2ẑ20

C0 � n1C1 � n2C2
ð14aÞ

z20 ¼
ðC0 � n1C1Þẑ20 þ n2C1ẑ10

C0 � n1C1 � n2C2
ð14bÞ

z12 ¼ ẑ12 �
n2ðC0 � n2C2Þẑ10 þ n1ðC0 � n1C1Þẑ20

C0 � n1C1 � n2C2
ð14cÞ

The expression for (L12)0/(L11)0 can be obtained by inserting

eqn 14(a–c) into eqn 12:

ðL12Þ0
ðL11Þ0

¼C2
ðC0�n1C1�n2C2Þẑ12�n2ðC0�n2C2Þẑ10�n1ðC0�n1C1Þẑ20

C1ðC0�n1C1�n2C2Þẑ12þn22C1C2ẑ10þðC0�n1C1Þ2ẑ20
ð15Þ

If we then take the limit of small C1 and C2, eqn (15) finally

becomes:

ðL12Þ0
C2V

�
0 ðL11Þ0

¼ �n1 1þ n2
n1

ẑ10
ẑ20

 !
þ ẑ12
ẑ20

ð16Þ

Fig. 3 Water excess, N0, as functions of DEG concentration, C2, for

the PEG–DEG–H2O system. The solid curve is a fit through the data.
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where V0* is the molar volume of pure solvent. Thus, a

negative term, proportional to n1, contributes to the value of

[(L12)0/(L11)0]/C2 for solvated solutes. For dilute solutions,

D1* = RTV0*/ẑ10 and D2* = RTV0*/ẑ20 are the tracer

diffusion coefficients of the two solutes.23 We will apply

eqn (16) to the PEG–DEG–water system in order to calculate

n1. This parameter characterizes PEG hydration. It is

important to note that the application of eqn (15) with

C1 = 0.25 mM and C2 = 0 instead of the limiting expression

given by eqn (16), produces the negligible error of 1% into the

calculated value of n1.
We will now estimate (n2/n1)(ẑ10/ẑ20) and (ẑ12/ẑ20). We shall

see that their contribution in eqn (16) is expected to be

small. The value of n2/n1 is approximately equal to the

molecular-weight ratio between PEG and DEG, M2/M1. For

dilute solutions, the ratio ẑ10/ẑ20 is equal to D2*/D1*. Using

D1* = 0.061 � 10�9 m2 s�1 and D2* = 0.897 � 10�9 m2 s�1,40

we obtain (n2/n1)(ẑ10/ẑ20) = 0.078. Hence, osmolyte solvation

introduces the small correction of 7.8% to the factor

multiplying n1 in eqn (16).

For an order-of-magnitude estimate of ẑ12/ẑ20, we can

assume that ẑij/ẑkj = ai/ak, where the ai are parameters used

to scale the ratios of the frictional coefficients.17 In other

words, it is assumed that the ratio ẑij/ẑkj depends on the

chemical nature of i and k only. This assumption is consistent

with the multicomponent extension of the well-known

Darken equation for binary systems.17,23 Hence, we derive:

ẑ12/ẑ02 = ẑ10/ẑ00 = D0*/D1*, where ẑ00 is the water–water

frictional coefficient and is related to the tracer-diffusion

coefficient of water, D0*, by D0* = RTV0*/ẑ00. Using

D1* = 0.061 � 10�9 m2 s�1 and D0* = 2.30 � 10�9 m2 s�1,64

we obtain: ẑ12/ẑ20 = 38.

We are now in position to calculate n1 from eqn (16).

Using the reported value of [(L12)0/(L11)0]/C2 and V0* =

0.018 dm3 mol�1, we obtain n1 = 900. This corresponds to

2.0 water molecules bound to each PEG monomeric units. We

can see that the ẑ12/ẑ20 is only a small fraction (4.2%) of n1,
thereby showing that the accuracy for the estimation of this

frictional-coefficient ratio needs not be high. If we assume that

our estimates have introduced a systematic error as high as the

values of ẑ12/ẑ20 and n2/n1, we conclude that the calculated

value of n1 has an error of the order of 10%. We also note

that ẑ12/ẑ20 and n2ẑ10/ẑ20 contribute in eqn (16) with opposite

sign. This implies that their net effect on the value of

[(L12)0/(L11)0]/(C2V0*) is small and [(L12)0/(L11)0]/(C2V0*) E �n1
can be regarded as a good approximation.

The extracted value of n1 is about 20% smaller than that of

N0 = 1160 calculated above. That N0 is larger than n1 can be

explained by invoking molecular crowding. Due to excluded-

volume interactions between the two solvated solutes, the

center of mass of a DEG molecule will not be able to access

the volume occupied by both the solvated PEG macro-

molecules and their adjacent solvent layers with thickness

proportional to the size of DEG molecules. We can make a

rough estimate of N0 by approximating the solvated solutes as

spherical particles. In this case, the total volume excluded to

DEG molecules is Vex = ( �V1 + n1V0*)(1 + R2/R1)
3, where

R1 and R2 are the radii of solvated PEG and DEG molecules

respectively.35,65,66 We note that �V1 + n1V0* can be regarded

as the hydrodynamic volume of the macromolecule.47 If we

assume that the ratio R1/R2 is approximately equal to the

diffusion ratio, D1*/D2*, we obtain Vex E 40 dm3 mol�1. The

value of N0 E 1300 can be then calculated from (Vex � �V1)/V0*.

Considering all approximations involved, we believe that

this estimate of N0 is in good agreement with its actual

determined value. Our analysis has shown that multi-

component diffusion studies can be used to provide

information on both hydration and preferential hydration of

macromolecules in ternary aqueous solutions. For our

investigated system, the water excess characterizing preferential

hydration has been found to be slightly higher than the actual

number of water molecules bound to the PEG macromolecules.

Examination of cross-diffusion coefficients

We will now discuss the role of N0 and n1 on the cross-

diffusion coefficients, (Dij)0. Because (Dij)0 becomes directly

proportional to both Ci and (Dii)0 = Di* in the limit of dilute

solutions, it is convenient to consider the normalized quotient

[(Dij)0/(Dii)0]/Ci.
35 In this way, the explicit dependence of the

cross-diffusion coefficient on amount and tracer diffusion of

solute can be removed. In Fig. 4, we plot our experimental

values of [(Dij)0/(Dii)0]/Ci as a function of C2. We can see that

the macromolecule quotient, [(D12)0/(D11)0]/C1, is significantly

smaller than the osmolyte quotient, [(D21)0/(D22)0]/C2.

To examine the difference in magnitude between these two

diffusion quotients, we employ eqn (3a)–(d) to derive their

dilute-solution expressions in terms of thermodynamic

ratios, m(c)12/m
(c)
22 and m(c)21/m

(c)
22, and transport-coefficient ratio,

(L12)0/(L11)0:

ðD12Þ0
C1ðD11Þ0

¼ mðcÞ12
C2m

ðcÞ
22

þ ðL12Þ0
C2ðL11Þ0

ð17aÞ

ðD21Þ0
C2ðD22Þ0

¼ mðcÞ21
C2m

ðcÞ
22

þ ðL12Þ0
C2ðL11Þ0

D�1
D�2

ð17bÞ

where we have also used: Cimii
(c)/RT = 1 and (Dii)0 =

RT(Lii)0/Ci = Di*. Eqn (17a),(b) show that the two diffusion

quotients are given by the sum of a thermodynamic and a

transport term. We also note that D1*/D2* is small and the

Fig. 4 Diffusion-coefficient ratios: [(D12)0/(D11)0]/C1 (circles) and

[(D21)0/(D22)0]/C2 (squares) as a function of DEG concentration, C2,

for the PEG–DEG–H2O. The solid curves are fits through the data.
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transport term in eqn (17b) can be neglected being only about

3% of [m(c)21/m
(c)
22]/C2. Thus, the [(D21)0/(D22)0]/C2 quotient is

essentially a thermodynamic quantity.

Numerical examination of eqn (7b),(c) shows that we can

approximately write m(c)12/m
(c)
22 E m(m)

12 /m
(m)
22 and m(c)21/m

(c)
22 E

m(m)
12 /m

(m)
22 + C2

�V1 in dilute solutions. We note that the small

partial molar volume of the osmolyte, �V2 = 0.092 dm3 mol�1,

can be neglected with respect to [m(m)
12 /m

(m)
22 ]/C2

(410 dm3 mol�1) in eqn (7b). It is therefore a very good

approximation to write the following expressions for the

molarity-based thermodynamic ratios in eqn (17a),(b):

1

C2

mðcÞ12
mðcÞ22
	 N0V

�
0 ð18aÞ

1

C2

mðcÞ21
mðcÞ22
	 N0V

�
0 þ �V1 ð18bÞ

where we have set N0 = Nex
0 and replaced m2/m0 with V0*C2.

If we insert eqn (18a),(b) into eqn (17a),(b) and approximate

[(L12)0/(L11)0]/C2 by �n1V0*, we obtain the following

expressions for the two diffusion quotients:

ðD12Þ0
C1ðD11Þ0

	 ðN0 � n1ÞV�0 ð19aÞ

ðD21Þ0
C2ðD22Þ0

	 �V1 þN0V
�
0 ð19bÞ

Eqn (19a),(b) directly relate the diffusion quotients to N0 and

n1, the hydration parameters discussed above. We can see that

[(D21)0/(D22)0]/C2 is approximately equal to the excluded

volume, Vex = �V1 + N0V0*, whereas [(D12)0/(D11)0]/C1 is

significantly smaller because it is approximately equal to the

difference between Vex and the hydrodynamic volume of the

macromolecule, �V1 + n1V0*. To appreciate the accuracy of

approximate eqn (19a),(b), we insert the determined values of

N0 and n1 in these expressions. We obtain: [(D21)0/(D22)0]/C2 E
38 dm3 mol�1 and [(D12)0/(D11)0]/C1 E 5 dm3 mol�1 consistent

with our results shown in Fig. 4. We believe that eqn (19a),(b)

can be used to model multicomponent-diffusion processes in

aqueous solution containing solvated solutes of very different

size. However, it is also important to observe that estimating

the value of [(D12)0/(D11)0]/C1 seems very difficult because

accurate values of N0 � n1 would be needed.

Summary and conclusions

We have experimentally characterized coupled diffusion

for the PEG–DEG–water ternary system. This is a

macromolecule–osmolyte–solvent system in which all three

components are neutral species. Ternary diffusion coefficients

were used to characterize the thermodynamic factor

m(m)
12 /m

(m)
22 and the transport-coefficient ratio (L12)0/(L11)0 as a

function of DEG concentration. The extracted values of

m(m)
12 /m

(m)
22 show that PEG is preferentially hydrated in the

presence of DEG. Using the two-domain model, we have

characterized PEG preferential hydration by calculating the

excess of water, Nex
0 , in the local domain of a PEG macro-

molecule. We have found that Nex
0 decreases as C2 increases,

consistent with a contraction of PEG macromolecules due to

the osmotic stress of DEG molecules.

We have found that (L12)0/(L11)0 is negative with magnitude

comparable with that of m(m)
12 /m

(m)
22 . Our results on the

PEG–DEG–water systems allow us to conclude that large

negative values of (L12)0/(L11)0 can be obtained even for

ternary systems in which all components are neutral species.

This implies that the Onsager cross-transport coefficient

should not be neglected in multicomponent-diffusion

theoretical models even when ionic interactions or chemical

association between the solute species are absent.

We have extracted the transport quotient [(L12)0/(L11)0]/C2

in the limit of C2 = 0. By including solute solvation into the

frictional-coefficient formulation of diffusion, (L12)0/(L11)0 is

indeed predicted to be negative for hydrated PEG macro-

molecules. Specifically, [(L12)0/(L11)0]/C2 is approximately

equal to �n1V0*, where n1 is the number of water molecules

bound to the PEG macromolecules. We have found that Nex
0 is

slightly larger than n1, consistent with the presence of

PEG–DEG excluded-volume interactions. This result

contributes to the understanding of macromolecular

hydration compared with preferential hydration.

Both experimental cross-diffusion coefficients were found to

be positive. The value of [(D21)0/(D22)0]/C2 was significantly

larger than [(D12)0/(D11)0]/C1 because the first quotient is

approximately equal to the excluded volume, ( �V1 + N0)V0*,

whereas the second quotient is approximately equal to the

difference in volume, (N0–n1)V0*. This work significantly

contributes to the fundamental understanding of coupled

diffusion in neutral macromolecule–additive–water ternary

systems because it provides the basis for understanding

coupled diffusion in more complex aqueous systems such as

those containing charged proteins or nucleic acids in the

presence of salts or osmolytes.
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