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Coupled diffusion is observed in multicomponent liquid mixtures in which strong thermodynamic interactions
occur. This phenomenon is described by cross terms in the matrix of multicomponent diffusion coefficients.
This paper reports a theoretical analysis on the relative role of thermodynamic factors and Onsager cross-
coefficients on cross-diffusion coefficients relevant to ternary mixtures containing macromolecules or colloidal
particles in the presence of salting-out conditions. A new model based on frictional coefficients between
solvated solutes is reported. This model predicts that the Onsager cross-coefficient is negative and contributes
significantly to cross-diffusion coefficients even at infinite dilution for solutes with a large difference in size.
These predictions are consistent with recent experimental results. The role of preferential solvation and excluded-
volume interactions on the thermodynamic factors are also examined. Excluded-volume interactions are
introduced through the use of the McMillan-Mayer thermodynamic framework after emphasizing some
important aspects of diffusion reference frames and thermodynamic driving forces. Finally, new expressions
for cross-diffusion coefficients are proposed.

I. Introduction

Diffusion plays an important role in many industrial, geochem-
ical, and biochemical processes.1 Modeling these processes
include the knowledge of the diffusion coefficients.2 The
complete description of a system with N solutes requires an N
× N matrix of diffusion coefficients, Dij, relating the flux of
each solute component to the gradients of all solute compo-
nents.3 The N diagonal main coefficients, Dii, characterize the
flux of a solute due to its own concentration gradient whereas
the remaining N(N - 1) cross-coefficients, Dij with i + j,
characterize the flux of a solute due to the concentration gradient
of the other solute. These cross-terms describe coupled diffusion.

In many cases, diffusion processes are modeled with the
simplification that the N(N - 1) cross-diffusion coefficients can
be neglected.1,2 However, this approximation may not be valid
for strongly interacting solutes or for processes occurring in
the presence of large concentration gradients such as those at
the interface between two different mixtures. Thus, it is generally
important to measure and predict cross-diffusion coefficients.4

Since cross-diffusion coefficients describe the net interaction
between two different solutes, experimental5-17 and theoret-
ical18-24 investigations on ternary systems have played a chief
role in the comprehension of coupled diffusion. Moreover,
measurements of ternary diffusion coefficients have been used
to reliably extract thermodynamic data.7,8,25

For ternary systems with two electrolyte solutes sharing a
common ion, the two cross-diffusion coefficients can be
predicted at infinite dilution by using the Nernst-Hartley
equations.3,18 These relations are based on the electrostatic
coupling existing between ionic species. Expressions for the
two cross-diffusion coefficients are also available for ternary
systems where chemical association occurs between the sol-
utes.20 However, coupled diffusion is not well-understood for
ternary systems in which the two solutes exert a salting-out
effect on one another and common-ion effects are absent.7,20

This phenomenon becomes particularly interesting in the case
of macromolecular solutions, where additives are often intro-
duced to induce phase transitions by salting-out interactions.6

Coupled diffusion is also important for modeling the drying
behavior of polymer-solvent mixtures.22

In most cases, prediction of Dij at infinite dilution with respect
to both solutes is made through the approximation that the ratio
Dij/Dii is a thermodynamic factor. This can be either calculated
from available thermodynamic data or estimated through the
use of equilibrium models.9-12,20 This approximation is however
based on the assumption that the frictional interaction between
the two solutes can be neglected with respect to the correspond-
ing thermodynamic interaction.

The assumption that Dij/Dii is essentially a thermodynamic
factor is questionable even at infinite dilution. Indeed, for ternary
aqueous salt solutions containing a neutral macromolecule, it
has been recently observed that only one of the two diffusion-
coefficient ratios can be approximated as a thermodynamic
factor.7 In contrast, the other diffusion-coefficient ratio was
found to be significantly smaller than its corresponding ther-
modynamic factor. This implies that frictional interactions
cannot be generally neglected. Thus, it becomes clearly impor-
tant to understand in which conditions thermodynamic ap-
proximation becomes reliable. Models based on frictional
coefficients20,22,24,26-28 can be used to characterize the frictional
interaction between the two solutes. However, current ap-
proaches qualitatively fail to describe the observed discrepancy
between diffusion-coefficient ratios and thermodynamic factors.7

The role of excluded-volume interactions on the thermody-
namic factors have been examined also.6,9-12 For ternary
systems, thermodynamic data on solute-solute interactions are
often not available. Thus, thermodynamic factors are estimated
through the use of models. For macromolecular solutions, it
has been proposed that excluded-volume effects are mostly
responsible for the experimentally observed large and positive
values of Dij/Dii.6 Hence, predictive equations based on excluded-
volume effects have been reported for these systems.9-11

However, the thermodynamic basis and the actual presence of
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excluded-volume effects in Dij/Dii have been questioned.12

Arguing along this line, it has been proposed that positive large
Dij/Dii can be obtained even for ideal solutions. Indeed, for ideal
solutions, it can been shown that Dij/Dii is directly proportional
to the difference in partial molar volume between solute j and
solvent.12,20 This result however raises two concerns in relation
to solution mixing entropy. First, the expression of ideal mixing
entropy has been microscopically derived by using the hypoth-
esis that the molecular volumes of all system components are
the same. Thus, the derived expression for Dij/Dii is expected
to be accurate only in the limit that partial-molar-volume
differences between solutes and solvent are small. Clearly, this
condition does not apply to macromolecular solutions. Second,
well-established expressions of mixing entropy based on
excluded-volume interactions have been extensively employed
for the thermodynamic characterization of macromolecular
solutions or colloidal suspensions.29,30 Thus, it is expected that
excluded-volume effects significantly contribute to the Dij/Dii

thermodynamic factor for macromolecular solutions.
The main objective of this paper is to theoretically examine

the contribution of both frictional and thermodynamic terms in
Dij/Dii for ternary systems in which solute solvation and
excluded-volume interactions are present. This paper is orga-
nized in the following way. In Section II, fundamental driving
forces for diffusion are examined in the context of McMillan-
Mayer theory31 in order to formally introduce excluded-volume
interactions. The extraction of thermodynamic data from
experimental ternary diffusion coefficients is also discussed in
relation to excluded-volume interactions. In Section III, the
frictional-coefficient formalism is reviewed and compared with
recent experimental results. In Section IV, a new model for the
frictional coefficients based on solute solvation consistent with
experimental results is reported. In Section V, the relative
contribution of frictional and thermodynamic terms in Dij/Dii is
examined at infinite dilution based on solute solvation and
excluded-volume interactions.

II. Thermodynamic Driving Forces for Diffusion

Isothermal diffusion is driven by the gradient of chemical
potential, µi, of the system components. According to nonequi-
librium thermodynamics,32,33 the rate of entropy production σ
is related to ∇ µi and the molar fluxes, Ji, taken with respect to
the center of mass of the system. For a system with N + 1
components, we have

-Tσ)∑
i)0

N

Ji ∇ µi (1)

where T is the absolute temperature. Here, the subscript 0 is
used to denote the solvent component.

We can introduce the fluxes, (Ji)0 ) Ji - (Ci/C0)J0, taken
with respect to the solvent frame of reference, where Ci (with
i ) 0,..., N) is the molar concentration of component i.3,21,34,35

If we insert (Ji)0 into eq 1, we obtain

-Tσ)∑
i)1

N

(Ji)0 ∇ µi (2)

where the Gibbs-Duhem equation

∑
i)0

N

Ci ∇ µi ) 0 (3)

has been applied. Because σ is a sum of products of fluxes and
forces, the following linear law holds,32,33

-(Ji)0 )∑
j)1

N

(Lij)0 ∇ µj (with i) 1, ..., N) (4)

where the (Lij)0 are the solvent-frame Onsager coefficients. These
coefficients obey the Onsager reciprocal relations: (Lij)0 ) (Lji)0

with i + j.35,36

We can also introduce the fluxes, (Ji)V ) Ji - Ci∑i ) 0
N Vj i Ji,

taken with respect to the center of volume of the system,3,35

where Vj i (with i ) 0,..., N) is the partial molar volume of
component i. If we insert (Ji)V into eq 1 with Vj0(J0)V )
-∑i ) 1

N Vj i (Ji)V, we obtain

-Tσ)∑
i)1

N

(Ji)V[∇ µi - (Vji ⁄ Vj0) ∇ µ0] (5)

According to eq 5, linear laws for the volume-frame fluxes
are written by taking the forces, ∇ µi - (Vj i/Vj0)∇ µ0, instead of
∇ µi,

-(Ji)V )∑
j)1

N

(Lij)V[∇ µi - (Vji ⁄ Vj0) ∇ µ0] (with i) 1, ..., N)

(6)

where the (Lij)V are the volume-frame Onsager coefficients and
(Lij)V ) (Lji)V with i + j.

Diffusion processes are normally described with respect to
concentration gradients through the use of Fick’s first law3

-(Ji)r )∑
j)1

N

(Dij)r ∇ Cj (with i) 1, ..., N) (7)

where the (Dij)r’s are the diffusion coefficients and the subscript
r denotes the reference frame (e.g., 0 or V). Diffusion coef-
ficients can be expressed in terms of Onsager coefficients and
thermodynamic factors by applying eqs 4, 6, and 7,

(Dij)0 )∑
k)1

N

(Lik)0µkj (with i,j) 1, ..., N) (8)

(Dij)V )∑
k)1

N

(Lik)V[µkj - (Vji ⁄ Vj0)µ0j] (with i, j) 1, ..., N)

(9)

where the µkj ) (∂µk/∂Cj)Ci,i+j are the thermodynamic factors
characterizing the interactions between the solution components.

To an excellent approximation, measured diffusion coef-
ficients correspond to the volume-fixed frame.34 However, the
solvent-frame diffusion coefficients, (Dij)0, are more simply
related to chemical-potential derivatives compared to the (Dij)V.
Thus, thermodynamic analysis on diffusion data is usually
performed on (Dij)0.25 These diffusion parameters are calculated
from the measured (Dij)V by using21,37

(Dij)0 ) (Dij)V -Ci∑
k)1

N

Vjk(Dkj)V (with i,j) 1, ..., N) (10)

However, as it will be now shown, it may be more convenient
to perform thermodynamic analysis directly on the volume-
frame thermodynamic factor, [µkj - (Vj i/Vj0)µ0j], instead of µkj,
for macromolecular systems. This observation follows from the
realization that chemical potentials of an incompressible liquid
mixture with N + 1 components can be formally converted into
effective chemical potentials of a gas mixture with N compo-
nents, and the osmotic pressure of the liquid mixture is
equivalent to the gas pressure. This is a well-known cor-
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respondence that relates to the McMillan-Mayer theory based
on statistical mechanics.31,38-41 This conversion requires the
assumption that the partial molar volumes and, consequently,
the total volume are not changing during an isobaric and
isothermal liquid diffusion process (see Appendix A). The
effective chemical potentials are related to the real chemical
potentials by40

µ̃i ≡ µi - (Vji ⁄ Vj0)µ0 (with i) 1, ..., N) (11)

Thus, volume-frame diffusion coefficients, (Dij)V, are directly
related to the derivatives of µ̃i. By assuming that Vj i is constant,
eq 9 becomes

(Dij)V )∑
k)1

N

(Lik)Vµ̃kj (with i, j) 1, ..., N) (12)

where µ̃kj ) (∂µ̃k /∂Cj)Ci,i+j. One important property of µ̃kj,
which does not generally apply to µkj,19,25 is that µ̃jk ) µ̃kj with
j + k.

To examine the difference between µ̃kj and µkj, we will now
consider their relation with the osmotic pressure, Π, through
the Gibbs-Duhem equations:

∑
i)1

N

Cidµ̃i ) dΠ (13)

∑
i)1

N

Ci dµi )-C0dµ0 )C0V
j

0dΠ (14)

For dilute solutions, we can introduce the virial equation of
state for a gas mixture according to the McMillan-Mayer
theoretical framework

Π
RT

)C(1+C∑
k)1

N

∑
j)1

N

xkxjBkj + ...) (15)

where C ) ∑i ) 1
N Ci, xi ) Ci/C, the Bkj’s are the second virial

coefficients, and Bkj ) Bjk with k + j. If solvent molecules are
small compared to solute particles, statistical mechanics can be
used to relate the Bkj to a mean-force potential describing
solvent-mediated interactions between the solute particles.31

Here, the solvent continuum plays the role that vacuum does in
an actual gas system. It is through the use of Bkj that excluded-
volume interactions can be properly inserted in the chemical-
potential expressions.

We can now derive expressions for µ̃kj and µkj in terms of
Bkj by using eqs 13-15.

µ̃ij ⁄ RT) δij ⁄ Ci + 2Bij + ... (16)

µij ⁄ RT) δij ⁄ Ci + 2Bij -Vji + ... (17)

where δij is the Kronecker delta. It is important to remark that
µ̃ij is directly related to virial coefficients and not µij. Because
the distinction between µ̃i and µi has not always been clearly
made,42,43 confusion has arisen concerning the application of
hard-sphere models to liquid mixtures. In Section V, relation-
ships between cross-diffusion coefficients and hard-sphere
models are obtained by using eqs 16 and 17.

It has been previously shown25 that the chemical potential
derivatives µ12 and µ21 can be extracted from experimental
ternary diffusion coefficients. In Appendix B, it is shown how
this approach can be extended to the extraction of µ̃12.

III. Frictional-Coefficient Formulation of Diffusion

The Onsager transport coefficients can be examined in term
of frictional coefficients. Indeed, a diffusion process can be
thought to occur in a quasi-stationary regime in which the
thermodynamic driving forces equal the opposing frictional
force. On the basis of frictional forces, the following linear laws
for diffusion have been proposed by Bearman:27

- ∇ µi )∑
j)0

N

Cj�ij(ui - uj) (with i, j) 0, ..., N) (18)

where �ij are coefficients describing the frictional force between
species i and species j, and ui is the species velocity of
component i relative to the center of mass of the system. The
frictional coefficients satisfy the conditions ∑j ) 0

N Cj�ij ) 0 and
�ij ) �ji with i + j.35 Equation 18 is equivalent to resistance-
based equations previously reported by Onsager26 and to the
Stefan-Maxwell equations.44 Contrary to (Lik)r, �ij are frame
independent and have a direct physical interpretation in terms
of friction between the system components.45 Hence, several
theoretical examinations of the diffusion coefficients start from
frictional coefficients. In some models, the �ij’s have been
estimated by using the approximation �ij

2 ) �ii�jj.22,24 Generally,
all �ij values (with i + j) are assumed to be positive, consistently
with the physical concept of friction. However, this assumption
is not a necessary condition for the second law of thermody-
namics to be respected, and negative values of �ij may occur in
principle. This apparent discrepancy between thermodynamics
and friction formalism can be understood by observing that eq
18 is defined with respect to the system components and not
the actual diffusing species. Because of physical or chemical
association between two components, new chemical species can
be formed. If eq 18 were defined with respect to the diffusing
species, all frictional-coefficient values may be positive. In
Section IV, we will examine the sign of �ij in relation to solvated
solute molecules.

The relation of the solvent-frame Onsager coefficients, (Lij)0,
to �ij will be now examined for a ternary system. Note that the
volume-frame coefficients, (Lij)V, which are less straightfor-
wardly related to the frictional coefficients, can be obtained from
(Lij)0 by applying eq 3 and (Ji)V ) (Ji)0 - Ci∑i ) 1

N Vj i (Ji)0 to
eqs 4 and 5. This yields

(L11)V ) (1-C1V
j

1)
2(L11)0 - 2C1V

j
2(1-C1V

j
1)(L12)0 +

C1
2Vj2

2(L22)0 (19)

(L12)V ) (1-C1V
j

1 -C2V
j

2)(L12)0 -C2V
j

1(1-C1V
j

1)(L11)0 -

C1V
j

2(1-C2V
j

2)(L22)0 (20)

(L22)V ) (1-C2V
j

2)
2(L22)0 - 2C2V

j
1(1-C2V

j
2)(L12)0 +

C2
2Vj1

2(L11)0 (21)

For a ternary system, eq 18 reduces to

∇ µ1 )C0�10(u0 - u1)+C2�12(u2 - u1) (22a)

∇ µ2 )C0�20(u0 - u2)+C1�21(u1 - u2) (22b)

where �12 ) �21. Here, the expression for ∇ µ0 has been omitted
because it can be recovered from eqs 22a,b by using eq 3. If ui

- uj is replaced with (Ji)0/Ci - (Jj)0/Cj in eqs 22a,b, we find
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-C1 ∇ µ1 ) (C0�10 +C2�12)(J1)0 -C1�12(J2)0 (23a)

-C2 ∇ µ2 ) (C0�20 +C1�12)(J2)0 -C2�21(J1)0 (23b)

By comparing eqs 23a,b with eq 4, the following expressions
for (Lij)0 are obtained:3

(L11)0 )C1

C0�20 +C1�12

C0
2�10�20 +C0�12(C1�10 +C2�20)

(24)

(L12)0 ) (L21)0 )C1C2

�12

C0
2�10�20 +C0�12(C1�10 +C2�20)

(25)

(L22)0 )C2

C0�10 +C2�12

C0
2�10�20 +C0�12(C1�10 +C2�20)

(26)

Physical insight on the behavior of both (Lij)0 and (Lij)V can
be obtained by examining eqs 19-21 and 24-26 for dilute
solutions. In this limiting case, we find

(L11)0 ) (L11)V )C1(V0
∗ ⁄ �10))C1D1

∗ (27)

(L22)0 ) (L22)V )C2(V0
∗ ⁄ �20))C2D2

∗ (28)

(L12)0 )C1C2(V0
∗ ⁄ �10)(V0

∗ ⁄ �20)�12 )C1C2D1
∗D2

∗�12 (29)

(L12)V ) (L12)0 -C1C2(V
j

1D1
∗+Vj2D2

∗))C1C2[D1
∗D2

∗�12 -

(Vj1D1
∗+Vj2D2

∗)] (30)

where V0
* ) 1/C0 is the molar volume of pure solvent and Di

* )
V0

*/�0i is the tracer diffusion coefficient of solute i. Equations
27-30 describe the first-order dependence of the Onsager
coefficients on the solute concentrations. It is important to
observe that (Lii)0 ) (Lii)V to first order in Ci, whereas generally,
the cross-terms (L12)0 and (L12)V are not equal to each other to
first-order in C1C2. Specifically, we can see that (L12)V < (L12)0.
If we assume that �12 ) 0, we obtain (L12)0 ) 0 and (L12)V )
-C1C2(Vj1D1

* + Vj2D2
*). One important observation related to this

analysis is that neglecting (L12)0 in the expression of (Dij)0 does
not necessarily imply that (L12)V can be neglected in the
expression of (Dij)V.

IV. Frictional Coefficients for Solvated Solutes

We now consider the role of solute solvation on frictional
coefficients. Although it is well established that solute molecules
move together with their solvation shell in solution,3,46 this
aspect has not been previously examined in relation to frictional
coefficients. Because of solvent binding, the chemical potentials
of the solvated solutes are

µ̂1 ) µ1 + ν1µ0 (31a)

µ̂2 ) µ2 + ν2µ0 (31b)

where νi is the number of solvent molecules bound to solute i.
On the basis of the frictional-coefficient formalism of eqs 22a,b,
we can write the following expressions for the solvated solutes:

∇ µ̂1 ) Ĉ0�̂10(û0 - u1)+C2�̂12(u2 - u1) (32a)

∇ µ̂2 ) Ĉ0�̂20(û0 - u2)+C1�̂21(u1 - u2) (32b)

where ∇ µ̂i ) ∇ µi + νi∇ µ0, �̂i0 describes the frictional force
between solvated solute i and free solvent, and �̂12 describes
that between the two solvated solutes. In eqs 32a,b, Ĉ0 ) C0

-ν1C1 - ν2C2 is the concentration of free solvent and û0 is the

velocity of the free-solvent molecules relative to the center of
mass of the system. It is important to observe that ∇ µ̂i are the
appropriate thermodynamic driving forces for the fluxes taken
with respect to the free-solvent frame of reference (see Appendix
C).

The relation between �ij and �̂ij will be now derived. Because
the free-solvent flux is given by Ĵ0 ) J0 - ν1J1 - ν2J2, the
following relation between û0 and u0 can be obtained:

û0 )
C0u0 - ν1C1u1 - ν2C2u2

C0 - ν1C1 - ν2C2
(33)

Equation 33 represents the difference between the free-solvent
and solvent reference frames. If we insert eq 33 into eqs 32a,b
and use eq 3, we obtain

[(C0 - ν1C1) ∇ µ1 - ν1C2 ∇ µ2] ⁄ C0 )C0�̂10(u0 - u1)+

C2(�̂12 - ν2�̂10)(u2 - u1) (34a)

[(C0 - ν2C2) ∇ µ2 - ν2C1 ∇ µ1] ⁄ C0 )C0�̂20(u0 - u2)+

C1(�̂21 - ν1�̂20)(u1 - u2) (34b)

Equations 34a,b can be used to obtain explicit expressions
for ∇ µ1 and ∇ µ2. The comparison with eqs 22a,b yields

�10 )
(C0 - ν2C2)�̂10 + ν1C2�̂20

C0 - ν1C1 - ν2C2
(35)

�20 )
(C0 - ν1C1)�̂20 + ν2C1�̂10

C0 - ν1C1 - ν2C2
(36)

�12 ) �̂12 -
ν2(C0 - ν2C2)�̂10 + ν1(C0 - ν1C1)�̂20

C0 - ν1C1 - ν2C2
(37)

For dilute solutions, we obtain the following relations between
the Onsager transport coefficients and �̂ij :

(L11)0 ) (L11)V )C1(V0
∗ ⁄ �̂10))C1D1

∗ (38)

(L22)0 ) (L22)V )C2(V0
∗ ⁄ �̂20))C2D2

∗ (39)

(L12)0 )C1C2[D1
∗D2

∗�̂12 -V0
∗(ν1D1

∗+ ν2D2
∗)] (40)

(L12)V )C1C2[D1
∗D2

∗�̂12 - (Vj1 + ν1V0
∗)D1

∗- (Vj2 + ν2V0
∗)D2

∗]

(41)

We note that �i0 ) �̂i0 in the limit of dilute solutions. Here,
�i0 and �̂i0 describe tracer diffusion of the solutes indepen-
dently of their solvation. Equation 40 shows that negative values
of �12 can be obtained in the presence of significant solute
solvation.

For ternary mixtures in which the two solutes associate in
solution, it can be shown that �12 > 0 and, consequently, (L12)0

> 0.20 However, the behavior of �12 for the case of two solutes
exerting a salting-out effect on one another is not well-
understood. Recently, diffusion coefficients were reported on
the poly(ethylene glycol)(1)-KCl(2)-water(0) ternary system.7

Poly(ethylene glycol) is a neutral hydrophilic polymer for which
salts are known to be salting-out agents. These diffusion data
lead to (L12)0 < 0, thereby implying that �12 < 0. It can be
shown that selective association of either the anion or the cation
to the polymer leads to �12 > 0. Hence, the ionic nature of one
of the two solutes may not be responsible for this experimental
result. For this system, it does not appear that the diffusion data
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can be simply interpreted in terms of the frictional coefficients
described by eq 29. On the other hand, the proposed solvation
model for frictional coefficients is consistent with negative
values of �12. For solvated polymers with high molecular weight,
νi may become large. Indeed, poly(ethylene glycol) undergoes
extensive hydration in aqueous solutions.7,10,11 This implies that
�̂12 may be neglected in eq 37 and �12 ≈ -(ν2�̂10 + ν1�̂20).

V. Behavior of Cross-Diffusion Coefficients

Solute solvation and excluded-volume interactions can sig-
nificantly affect coupled diffusion in solution. In this section,
the role of thermodynamic factors and Onsager coefficients on
the behavior of (Dij)0/(Dii)0 and (Dij)V/(Dii)V is examined. For a
ternary system, eq 8 yields the following expressions for the
solvent-frame diffusion coefficients:

(D12)0

(D11)0
)

(L11)0µ12 + (L12)0µ22

(L11)0µ11 + (L12)0µ21
(42a)

(D21)0

(D22)0
)

(L22)0µ21 + (L12)0µ11

(L22)0µ22 + (L12)0µ12
(42b)

By convention, the larger and smaller solutes will be labeled
with 1 and 2, respectively. If the Onsager cross-coefficient,
(L12)0, is zero in eqs 42a,b, the ratios (Dij)0/(Dii)0 become equal
to the corresponding thermodynamic factors, µij/µii. This as-
sumption has led to the examination of (Dij)0/(Dii)0 strictly in
terms of thermodynamic parameters. However, it has been
experimentally observed for the poly(ethylene glycol)(1)-
KCl(2)-water(0) ternary system that only (D21)0/(D22)0 ≈ µ21/
µ22 is a valid approximation. Indeed, the ratio (D12)0/(D11)0 was
found to be significantly smaller than µ12/µ11.7 This implies that
the thermodynamic approximation is valid only for the small
solute (i ) 2).

To discuss the validity of the thermodynamic approximation,
the (Dij)0/(Dii)0 ratios will be examined in the limit of dilute
solutions. Equation 40 will be used with the assumption that
�̂12 ) 0. Because (Dij)0/(Dii)0 is directly proportional to Ci and
is independent of Cj to first order, the magnitude of the quotients
(Dij)0/[Ci(Dii)0] will be considered. It is worth mentioning that
the dilute-solution behavior of (Dij)0/(Dii)0 is approximately
maintained even in concentrated solutions.7,10,11

In the limit of dilute solutions, (Dii)0 ) (Lii)0µii and µii/µjj )
Cj/Ci. Thus, eqs 42a,b becomes

(D12)0

C1(D11)0
)

µ12

C1µ11
+

(L12)0

C2(L11)0
(43a)

(D21)0

C2(D22)0
)

µ21

C2µ22
+

(L12)0

C2(L22)0
(43b)

The Onsager terms (Lij)0/[Ci(Lii)0] in eqs 43a,b describe the
deviation of the diffusion quotients (Dij)0/[Ci(Dii)0] from the
corresponding thermodynamic quotients µij/[Ciµii] in the limit
of dilute solutions.

To evaluate the magnitude of the thermodynamic quotients,
eq 17 can be used to obtain µij/[Ciµii] ) 2B12- Vj i. For the special
case of a hard-sphere mixture, Vj i ) NA(4/3)πRi

3 and the
excluded-volume interactions are described by B12 ) NA(2/
3)π(R1+R2)3,47 where NA is the Avogadro’s number and Ri is
the radius of component i. Figure 1 graphically illustrates the
magnitude of 2B12 compared to that of µ12/[C1µ11] and µ21/
[C2µ22] in the case of hard spheres. If R2/R1,1, we obtain 2B12

) Vj1. This limiting result is valid also for nonspherical solutes,
provided that solute 1 is significantly larger than solute 2. A

ternary system with 2B12 ) Vj1 is a suitable reference system
for ternary mixtures containing at least one macromolecular
solute. Deviations from this reference system can be describe
by introducing the phenomenological parameter q defined by

2B12 )Vj1(1+ q)3 (44)

where q ) R2/R1 for the special case of a pure hard-sphere
mixtures. Here, q describes the thickness of a shell surrounding
the large sphere and not accessible to the center of the small
sphere (see gray layer in Figure 1c).

In general, q does not necessarily characterize the relative
size of the two solutes. For instance, q can also be used to
describe preferential solvation of macromolecules in the pres-
ence of small osmolytes. Indeed, macromolecule(1)-osmo-
lyte(2)-solvent(0) ternary systems can be modeled invoking
the presence of a local domain represented by the solvent layer
surrounding a given macromolecule.48-51 This domain is in
equilibriumwithabulkdomaincharacterizingthesolvent-osmolyte
remaining solution. Within this model, Vj1 [(1 + q)3 - 1]
represents the excess of solvent volume in the local domain,
whereas Vj1 (1 + q)3 describes the volume excluded to the
osmolyte because of the presence of the macromolecule and
the solvation layer.

Explicit expressions for (Dij)0/[Ci(Dii)0] can be obtained from
eqs 43a,b by applying eq 44 and eqs 38-40 with �̂12 ) 0:

(D12)0

C1(D11)0
)Vj1[(1+ q)3 - 1]- ν1V0

∗[1+ (ν2 ⁄ ν1)(D2
∗ ⁄ D1

∗)]

(45a)

(D21)0

C2(D22)0
)Vj1[(1+ q)3 - (Vj2 ⁄ Vj1)]- ν1V0

∗[(D1
∗ ⁄ D2

∗)+

(ν2 ⁄ ν1)] (45b)

To qualitatively examine the contribution of the Onsager
terms compared to the corresponding thermodynamic terms, the
quotients -[(L12)0/(L11)0]/(µ12/µ11) and -[(L12)0/(L22)0]/(µ21/µ22)
are plotted as a function of D1

*/D2
* in Figure 2. These quotients

were calculated by using eqs 38-40 and 44 for the special case
of solvated spherical solutes with ν1V0

*/Vj1 ) 0.1. From this
figure, it is important to observe that -(L12)0/(L11)0 becomes

Figure 1. Graphic representation of hard-sphere excluded-volume
interactions. The gray areas represent 2B12 ) µ̃12 ⁄(C1µ̃11)
(A), 2B12 ) µ̃21⁄(C1µ̃22) (B), 2B12 - Vj1 ) µ12/(C1µ11) (C), and 2B12 -
Vj2 ) µ21/(C2µ22) (D). Note that µ̃12 ) µ̃21 and µ21/(C2µ22) -
µ12/(C1µ11) ) Vj1 - Vj2. In the limit of R2 , R1, we obtain 2B12 ) Vj1,
µ12/(C1µ11) ) 0, and µ21/(C2µ22) ) Vj1.
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comparable to µ12/µ11 for two solvated solutes with a very large
difference in size. Correspondingly, -(L12)0/(L22)0 becomes
negligible with respect to µ21/µ22. If the two solutes have
comparable sizes, it becomes reasonable to approximate both
diffusion quotients with the corresponding thermodynamic
factors. Experimental investigations on Poly(ethylene glycol)7

and lysozyme8 in the presence of aqueous KCl correspond to
D1

*/D2
* equal to 0.03 and 0.06 respectively. Clearly, -(L12)0/

(L11)0 cannot be neglected for these systems.
To further examine the case of two solvated solutes with a

very large difference in size, the conditions: D1
*/D2

* , 1, Vj2/Vj1

, 1 and ν2/ν1 , 1 are applied to eqs 45a,b. Furthermore,
because the diffusion coefficient is expected to have the weakest
dependence on solute size, ν2/ν1 , D1

*/D2
* in eq 45a can be also

assumed. Thus, eqs 45a,b become

(D12)0

C1(D11)0
)Vj1(1+ q)3 - (Vj1 + ν1V0

∗) (46a)

(D21)0

C2(D22)0
)Vj1(1+ q)3 (46b)

According to these limiting equations, (D21)0/[C2(D22)0] is a
thermodynamic factor. Indeed, eq 46b has been used to describe
excluded-volume effects of solvated macromolecules on small
osmolytes.8 Here, the solvated macromolecules can be regarded
as a second phase that excludes volume to the osmolyte.
Increasing the concentration of macromolecules at constant
osmolyte concentration will increase the effective concentration
of osmolyte in the solution between solvated macromolecules.
Given a uniform concentration of osmolyte in a gradient of
macromolecule concentration, there will be an effective con-
centration gradient of osmolyte that is directly proportional to
macromolecule concentration gradient. This in turn will drive
a flux of osmolyte from higher to lower macromolecule
concentration regions, which will be reflected in a positive value
of (D21)0 according to eq 46b. However, according to eq 46a,
this excluded-volume interpretation cannot be extended to (D12)0/
[C1(D11)0] because of the significant contribution of (Vj1 + ν1V0

*),
which can be regarded as the hydrodynamic volume46 of the
large solute. Hence, (D12)0/[C1(D11)0] is given by the difference
between excluded and hydrodynamic volume. Because it is
reasonable to expect that these two volumes are similar in
magnitude, we can deduce that -(L12)0/(L11)0 ≈ µ12/µ22. This

property has been indeed observed for the poly(ethylene
glycol)(1)-KCl(2)-water(0) ternary system.7

The limiting expressions of (Dij)V/[Ci(Dii)V] differ from those
of (Dij)0/[Ci(Dii)0] because the cross-terms (L12)0 and (L12)V are
not equal to each other even at infinite dilution. For a ternary
system, eq 9 yields the following expressions for the volume-
frame diffusion coefficients:

(D12)V

C1(D11)V
)

µ̃12

C1µ̃11
+

(L12)V

C1C2D1
∗ )Vj1(1+ q)3 -

[(Vj1 + ν1V0
∗)+ (Vj2 + ν2V0

∗)(D2
∗ ⁄ D1

∗)] (47a)

(D21)V

C2(D22)V
)

µ̃21

C2µ̃22
+

(L21)V

C1C2D2
∗ )Vj1(1+ q)3 -

[(Vj1 + ν1V0
∗)(D1

∗ ⁄ D2
∗)+ (Vj2 + ν2V0

∗)] (47b)

It is important to observe that both expressions contain the
same thermodynamic factor Vj1(1 + q)3. Excluded-volume
interactions between solutes may prevail with respect to
solvation for the case of solute particles significantly larger than
the solvent molecules. In this limit, the surface-to-volume ratio
of the solute particles may be small, and the volume of bound
solvent may be negligible compared to the intrinsic volume of
the particles. This condition may approximately apply to
spherical colloidal particles (e.g., large micelles and inorganic
nanoparticles) and very large globular proteins. This condition
may however not apply to solvated polymer coils for which
the ratio of νiV0

* to Vj i may be independent of polymer size. If
Vj i . νiV0

*, we can write

(D12)V

C1(D11)V
)Vj1(1+ q)3 -Vj1 -Vj2(D2

∗ ⁄ D1
∗) (48a)

(D21)V

C2(D22)V
)Vj1(1+ q)3 -Vj1(D1

∗ ⁄ D2
∗)-Vj2 (48b)

It is important to observe that the Onsager terms in eqs 48a,b
cannot be ignored even if νi ) 0 because of the offset between
(L12)0 and (L12)V. For a pure hard-sphere mixture, we can
substitute q ) R2/R1 ) D1

*/D2
* ) (Vj2/Vj1)1/3 in eqs 48a,b. This

allows us to obtain the following expressions for (Dij)V/[Ci(Dii)V]:

(D12)V

C1(D11)V
)Vj1(3+ 2q+ q2)q (49a)

(D21)V

C2(D22)V
)Vj1(1+ 2q+ 3q2) (49b)

These expressions describe pure depletion interactions be-
tween the two spherical solutes. In the limiting case of two
solutes with a very large difference in size, we obtain (D12)V/
[C1(D11)V] ) 0 and (D21)V/[C2(D22)V] ) Vj1.

VI. Summary and Conclusions

The roles of solute solvation and excluded-volume interac-
tions on (Dij)0/[Ci(Dii)0] and (Dij)V/[Ci(Dii)V] have been theoreti-
cally examined in the limit of dilute solutions. It is important
to remark that (Dij)0/[Ci(Dii)0] and (L12)0/(C1C2) differ from
(Dij)V/[Ci(Dii)V] and (L12)V/(C1C2), respectively, even at infinite
dilution. Negative values of the Onsager cross-term (L12)0 are
predicted for solvated solutes, consistently with experimental
results. For two solvated solutes with a large difference in size,
the -(L12)0/(L11)0 term in (D12)0/[C1(D11)0] cannot be neglected
because it has a magnitude comparable to µ12/µ11. Correspond-

Figure 2. Plots of the solvent-frame quotients -[(L12)0/(L11)0]/(µ12/
µ11) (solid curve) and -[(L12)0/(L22)0]/(µ21/µ22) (dashed curve) as a
function of D1

*/D2
*. These quotients were calculated by using eqs 38-40

and 44 for the special case of solvated spherical solutes with ν1V0
*/Vj1

) 0.1, (Vj2/Vj1) ) (D1
*/D2

*)3, and (ν2/ν1) ) (D1
*/D2

*)2. The factor q was
calculated by using the expression q ) (R2 + δ1 + δ2)/R1, where δ1

and δ2 are the thickness of the solvation layers surrounding the spherical
solutes, R2/R1 ) (Vj2/Vj1)1/3, δ1/R1 ) [1 + (ν1V0

*/Vj1)]1/3 - 1, and δ2/R2 )
[1 + (ν2/ν1)(Vj1/Vj2)(ν1V0

*/Vj1)]1/3 - 1.
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ingly, -(L12)0/(L22)0 becomes negligible with respect to µ21/µ22

in (D21)0/[C2(D22)0]. These predictions are consistent with
experimental results. Excluded-volume interactions, which have
been introduced through the McMillan-Mayer thermodynamic
framework, are predicted to prevail with respect to preferential
solvation for large globular solutes.
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Appendix A

The isothermal and isobaric change in the Helmoholtz free
energy, A, for an open system is given by

dA)-p dV+∑
i)0

N

µi dni (A1)

where p is the pressure, V is the volume, and ni is the number
of moles of component i. By using dV ) ∑i ) 0

N Vj i dni, eq A1
becomes

dA)-(p- µ0 ⁄ Vj0) dV+∑
i)1

N

[µi - (Vji ⁄ Vj0)µ0] dni (A2)

The free energy of this multicomponent system can be
compared to that of a pure reference solvent system with molar
volume VinV0 and occupying the same total volume, V:

dA* )-(p- µ0
∗ ⁄ Vj0) dV (A3)

By subtracting eq A3 from eq A2, we obtain

dÃ)-Π dV+∑
i)1

N

(µi - (Vji ⁄ Vj0)µ0) dni (A4)

where the difference Ã ≡ A - A* is the change in free energy
when solvent molecules are replaced by solute molecules at
constant volume and Π ) -(µ0 - µ0

*)/Vj0 is the osmotic
pressure. Equation A4 shows that a liquid mixture of N + 1
components can be equivalently treated as a compressible fluid
consisting of N effective components with pressure Π and
chemical potentials µ̃i ≡ µi - Vj i/Vj0)µ0. The µ̃i

,s are denoted as
effective chemical potentials.

Appendix B

Experimental solvent-frame ternary diffusion coefficients have
been used to extract chemical-potential derivatives, µ12 and µ21.24

Equivalently, it will be now shown that experimental volume-
frame diffusion coefficients can be used to extract the chemical-
potential derivative: µ̃12 ) µ̃21. For a ternary system, eq 12
becomes

[(D11)V (D12)V

(D21)V (D22)V
] ) [(L11)V (L12)V

(L21)V (L22)V
][ µ̃11 µ̃12

µ̃21 µ̃22
] (B1)

Equation B1 can be solved with respect to µ̃12, yielding

µ̃12 )
µ̃11(D12)V - µ̃22(D21)V

(D11)V - (D22)V
(B2)

Equation B2 can be used to determine µ̃12 provided that µ̃11
and µ̃22 are known. After the µ̃ij matrix has been determined,
the (Lij)V matrix can be also calculated upon the inversion of
eq B1. It is important to remark that the independent determi-

nation of µ̃11 and µ̃22 is difficult in general. However, if the
concentration of one solute, say C1, is small compared to that
of the other solute, C2, we obtain µ̃11 /RT ) 1/C1 and µ̃22 )
µ̃22*, where µ̃22* is the thermodynamic factor of the corre-
sponding binary system. Thermodynamic data on binary systems
are, by far, more accessible and available than those on ternary
systems. Thus, eq B2 can be used to determine µ̃12 as a
function of C2 in the limit of small C1. This approach could be
used to probe excluded-volume interactions in colloid-polymer
suspensions.29,30

Appendix C

Here, it is shown that ∇ µ̃i ) ∇ µi + νi∇ µ0 (with i ) 1, 2,..., N)
is the appropriate thermodynamic driving force for a diffusion
process examined with respect to the free-solvent reference
frame. By inserting (Ji)0 ) (Ji)0̂ - (Ci/C0)(J0)0̂ into eq 2, we
obtain

-Tσ)∑
i)1

N

[(Ji)0̂ - (Ci ⁄ C0)(J0)0̂] ∇ µi (C1)

Because Ĉ0 ) C0 - ∑i ) 1
N νiCi, we can also write

(J0)0̂ )∑
i)1

N

νi(Ji)0̂ (C2)

By inserting eq C2 into eq C1, we obtain

-Tσ)∑
i)1

N [(Ji)0̂ - (Ci ⁄ C0)∑
j)1

N

νj(Jj)0̂] ∇ µi )∑
i)1

N

(Ji)0̂(∇ µi +

νi ∇ µ0))∑
i)1

N

(Ji)0̂ ∇ µ̂i (C3)
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