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Rayleigh interferometry has been extensively used for the precise determination of diffusion coefficients for
binary and ternary liquid mixtures. For ternary mixtures, the 2× 2 matrix of multicomponent diffusion
coefficients is obtained. Polydispersity adds complexity to the meaning of these measured diffusion coefficients.
Here we discuss three important issues of polydispersity regarding the diffusion measurements extracted
from this interferometric technique. First, we report novel equations for the extraction of diffusion moments
from the Rayleigh interferometric pattern. These moments are used to define polydispersity parameters for
macromolecular systems. We have experimentally determined mean diffusion coefficients and polydispersity
parameters for aqueous solutions of poly(ethylene glycol) and poly(vinyl alcohol) at 25°C. Aqueous solutions
of poly(ethylene glycol) mixtures were used to examine the accuracy of the polydispersity parameters. Second,
we compare Rayleigh interferometry to dynamic light scattering. Specifically, we have performed diffusion
measurements on the same system using both techniques. To our knowledge, no direct experimental comparison
between dynamic light scattering and classical methods for the measurements of diffusion coefficients has
been previously reported in relation to polydispersity. We find that substantial discrepancies (i.e., 1 order of
magnitude) between the mean diffusion coefficients obtained from these two different techniques can be
observed when polydispersity is large. Third, for two-solute mixtures with one polydisperse solute, we report
a novel corrective procedure for extracting accurate ternary diffusion coefficients from Rayleigh interferometry.
Computer simulations were used to examine the accuracy of the extracted ternary diffusion coefficients.

Introduction

Diffusion coefficients of mixtures containing large solutes
(1-100 nm) such as polymers, proteins, micelles, vesicles, and
other nanoparticles are important for a large number of
laboratory, biological, and industrial processes. They have been
measured for two main reasons: (1) they are fundamental
physicochemical quantities related to particle size, aggregation,
and molecular interactions in solution; (2) they are necessary
parameters for modeling, predicting and designing the dynamic
behavior of these processes.1-3 One important property of
macromolecules and colloidal particles is polydispersity. Since
diffusion coefficients are very sensitive parameters to particle
size, diffusion measurements in dilute solutions yield the
moments of the particle-size distribution.4-11

Currently, dynamic light scattering (DLS)7 is the most
commonly used technique for measuring diffusion coefficients
of macromolecules and colloidal particles. In this case, mutual
diffusion coefficients are obtained from relaxation times of
microscopic concentration fluctuations in solution. Classical
techniques such as Rayleigh interferometry,13,14Gouy interfer-
ometry,15,16 and Taylor dispersion17 have been also used for
diffusion measurements in macromolecular solutions. In these
other cases, mutual diffusion coefficients are extracted from the
spatial evolution of macroscopic concentration gradients de-
signed by the experimentalist. For polydisperse solutes, the type

of moments of particle-size distributions depends on the
technique employed to measure diffusion coefficients. Thus,
DLS moments are different from those obtained using classical
techniques.

Contrary to DLS, classical techniques can be also used to
investigate multicomponent diffusion;17-19 i.e., the determination
of the complete diffusion-coefficient matrix for systems contain-
ing more than one solute. For instance, the 2× 2 matrix of
four diffusion coefficients has been reported for several ternary
systems containing a macromolecular solute.19-29 The Gosting
diffusiometer operating in the Rayleigh optical configuration
has generated the most accurate multicomponent diffusion
data.19-23 However, polydispersity of a macromolecular solute
adds complexity to the interpretation of the diffusion data. This
has been recently addressed by Mangiapia et al.10 For solutions
containing one polydisperse solute, their paper reports a
procedure for extracting meaningful and reliable multicompo-
nent diffusion coefficients using Gouy interferometry.

Here we discuss several aspects of polydispersity relevant to
Rayleigh interferometry. We report measurements of diffusion
moments by Rayleigh interferometry on macromolecular sys-
tems. Specifically, we have determined a mean diffusion
coefficient and polydispersity indices for aqueous solutions of
poly(ethylene glycol) and poly(vinyl alcohol) at 25°C. We have
then performed DLS measurements on the same polydisperse
systems and compared the results of these two techniques. To
our knowledge, no direct experimental comparison between DLS
and classical techniques has been previously reported in relation
to polydispersity. Finally, for ternary mixtures containing one
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polydisperse solute, we report a novel procedure for extracting
reliable multicomponent diffusion coefficients using Rayleigh
interferometry.

Rayleigh interferometry provides the one-dimensional profile
of refractive index inside a vertical channel filled with liquid.30

Diffusion inside the channel is brought about by an initial sharp
boundary between two solutions with different composition and,
consequently, different refractive index. The refractive-index
profile inside the channel is described by the functionf ) 2(n
- nj)/∆n wheren is the refractive index at a given position,x,
inside the channel, andnj and∆n are respectively the average
and the difference in refractive index between the two solutions.
The functionf is obtained by locating the fringe position of the
resulting Rayleigh interference pattern. Multicomponent diffu-
sion coefficients are normally obtained by applying a nonlinear
least-squares method tof within the free-diffusion boundary
condition. Sundelo¨f4 has theoretically shown for polydispersity
that the derivatives∂if/∂xi (with i ) 1,2,3,...) extrapolated to
the boundary position,x ) 0, can be used to extract a
corresponding set of moments of the particle-size distribution.
Clearly, these derivatives are associated with a power-series
expansion off with respect tox ) 0. Here, on the other hand,
we will show how to extract the same moments from the
corresponding power-series expansion of erfinv(f). This different
choice is motivated by its better convergence property.31

Theory

Effect of Macromolecular Polydispersity on Diffusion
Coefficients of Macromolecule-Solvent Systems.In this
section, we will first outline the well-established diffusion
equations used for Rayleigh interferometry. We will then
theoretically show how to extract the moments of the particle-
size distribution from the power-series expansion of erfinv(f).

Diffusion Equations.For a system withN macromolecular
components and a solvent, generalized Fick’s first law is2

In eq 1,Ji is the flux of componenti, Cj is the concentration of
componentj, andDij is the diffusion coefficient that relates the
flux of i to the concentration gradient ofj. For convenience,
we will define Ji and Cj with respect to themass of the
macromolecular components.

If the Dij values are constant andn linearly depends onCj,
the refractive-index profile associated with the free-diffusion
boundary condition is described by the linear combination of
N error functions:3,10

where

In eq 2,y ≡ x/2xt, where the spatial positionx ) 0 and time
t ) 0 corresponds to the initial sharp boundary between the
two solutions. In eq 3,Ri ≡ Ri∆Ci/∆n, Ri ≡ (∂n/∂ci), ∆ci is the
difference ini concentration between the two initial solutions,
and Σ k)1

N Γk ) 1. The Λk values are the eigenvalues of the
diffusion-coefficient matrix, whileTik andTik

-1 are the elements

of the eigenvector matrix and its inverse, respectively. The
function f in eq 2 is antisymmetric with respect toy ) 0.
However, the Dij values are generally not constant, and,
consequently,f may not be antisymmetric. To avoid this
problem, Creeth’s antisymmetrization procedure (Creeth-pair
method) has been normally applied, yielding a correctedf(y),
which is defined only fory g0. This function is normally used
for the determination of multicomponent diffusion coefficients.

For dilute solutions, cross-diffusion coefficients can be
neglected, and eq 2 becomes31,32

where Dk ≡ Dkk ) Λk, and wk ) Γk is the weight-fraction
contribution of speciesf to the macromolecule total mass. In
eq 3, we have also assumed that theRi values are all equal to
each other. This is a very good approximation for macromo-
lecular components with different size but the same chemical
composition.

Diffusion Moments.A linear combination of error functions
can be formally rewritten as a single error function of a series
expansion iny with respect toy ) 0. Thus, eq 2 can be rewritten
as

where

where theai are coefficients of the series expansion. For a
monodisperse macromolecule with diffusion coefficient,D, we
obtains ) a0 ) D-1/2 andai ) 0 for i * 0. For a polydisperse
macromolecule, the functions(y) can be calculated fromf(y)
using eq 5. Hence, theai can be experimentally determined,
thereby providing information on macromolecular polydisper-
sity.

We will now show how to relate theai to the diffusion
moments relative to the distribution of theΓk’s. By using the
mathematical identity erf(x) ) (2/xπ)Σ i)0

∞ {(-1)ix2i+1}/{(2i +
1)i!}, we can write the following two equivalent results:

By equating eq 7 and eq 8, we obtain the following identities:

where〈D-(2n + 1)/2〉 ≡ Σ k)1
N ΓkΛk

-(2n+1)/2 with n ) 0, 1, 2, 3,...
For dilute solutions, we obtain〈D-(2n+1)/2〉 ) Σ k)1

N wkDk
-(2n+1)/2;

-Ji ) ∑
j)1

N

Dij∇Cj with i ) 1,...,N (1)

f ) ∑
k ) 1

N

Γk erf(y/xΛk) (2)

Γk ≡ ∑
i ) 1

N

∑
j)1

N

(Ri/Rj)TikTkj
-1Rj (3)

f ) ∑
k

wk erf(y/xDk) (4)

f ) erf(sy) (5)

s ) ∑
i)0

∞

aiy
2i (6)

f ) erf(y ∑
i)0

∞

aiy
2i) )

2

xπ
∑
n)0

∞ (-1)ny2n+1

(2n + 1)n! (∑
i)0

∞

aiy
2i)2n+1 (7)

f ) ∑
k)1

N

Γk erf(yλk
-1/2) )

2

xπ
∑
n)0

∞ (-1)ny2n+1

(2n + 1)n!
∑
k)1

N

ΓkΛk
-(2n+1)/2 (8)

〈D-1/2〉 ) a0

〈D-3/2〉 ) a0
3 - 3a1

〈D-5/2〉 ) a0
5 - 10a0

2a1 + 10a2 (9)
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i.e., the〈D-(2n+1)/2〉 values become the diffusion moments of
the weight-fraction distribution. The momentum of lowest order
is the mean diffusion coefficientDA:

Polydispersity can be quantified by considering the diffusion
momenta of higher order. Hence, we define the following
polydispersity indices:

These can be determined from the experimentally determined
ai.

Molecular-Weight Polydispersity.All diffusion techniques
provide only indirect information on themolecular-weight
polydispersity. This is described by the ratiosMh w/Mh n )
Σ k)1

N wkMk Σ k)1
N wk/Mk and Mh z/Mh w ) Σ k)1

N wkMk
2/(Σ k)1

N wkMk)2,
whereMk is the molecular weight of speciesk, andMh n, Mh w and
Mh z are the number-average, mass-average, and z-average
molecular weights, respectively.33,34 These quantities are not
directly related toω andê.

A relation between molecular-weight polydispersity and
diffusion parameters may be obtained if a given analytical form
of thewk distribution34 is assumed. Here we report the important
example of the generalized exponential distribution applied to
polymers with molecular weightMk ) kM1, whereM1 is the
monomer molecular weight:34

In eq 13, the parametersl, h, andm characterize the position,
width, and shape of the distribution, respectively. The mass-
average degree of polymerization,〈k〉, is

where we have used the definition〈kn〉 ≡ Σ k)1
N wkkn with n

being any real number, andΓ is the gamma function. Equation
13 is a generalization of the Schulz-Zimm distribution,34 which
is obtained by settingm ) 1. The Flory most probable
distribution is obtained by settingm ) h ) 1. Finally, we also
observe that the Schulz-Zimm distribution approximates the
Poisson distribution34 if m ) l ) 1, i.e.,h ) 〈k〉.

For polymers in dilute solutions,Dk ∝ Rhk
-1 ∝ Mk

-a,8 where
Rhk is the hydrodynamic radius of speciesk, anda is a scaling
coefficient. We observe thata ) 1/2 for random coils, anda )
1/3 for compact spherical particles. SinceDk ∝ k-a, it can be
shown that34

Similar expressions can be obtained forω andê:

Equations 15-18 relateω andê to Mh w/Mh n andMh z/Mh w through
the coefficientsh andm.

Effect of Macromolecular Polydispersity on Ternary
Diffusion Coefficients of Macromolecule-Additive-Solvent
Systems.Monodisperse Macromolecular Solute.Rayleigh in-
terferometry has been used to obtain ternary diffusion coef-
ficients for macromolecule(p)-additive(s)-solvent ternary sys-
tems. However, these investigations have been limited to
monodisperse macromolecules (i.e., lysozyme).19-23 Here, a
generalized form of Fick’s first law is

Main-term diffusion coefficients,Dpp and Dss, describe the
flux of a solute due to its own mass concentration gradient,
while cross-term diffusion coefficients,Dps and Dsp, describe
the flux of a solute due to the mass concentration gradient of
the other solute. The four ternary diffusion coefficients have
been used for determining macromolecule-additive thermody-
namic interactions (preferential-interaction coefficients)20-24 and
for accurate modeling of diffusion processes.35,36

The four diffusion coefficients are obtained by performing
at least two experiments with different initial conditions.
Normally, four experiments are performed to minimize experi-
mental errors. A given initial condition can be described byRp

) Rp∆Cp/∆n or Rs ) Rs∆Cs/∆n ) 1 - Rp, where∆Cp and
∆Cs are the difference in macromolecule and additive concen-
trations between the two solutions. The two most employed
initial conditions correspond toRp ) 0 andRp ) 1. For a generic
Rp, the experimentalf(y,Rp) can be written in the following way:

where

and|D| ) DppDss- DpsDsp. The four diffusion coefficients can
be calculated from the values ofΓp

(Rp)0), Γp
(Rp)1), Λp, andΛs

extracted from the nonlinear least-square method37 applied to
eq 20.

We now observe that the two cross-diffusion coefficients,
Dps andDsp, are mainly related to the parametersΓp

(Rp)0) and
Γp

(Rp)1), respectively. SinceΛp ≈ Dpp, Λs ≈ Dss, and |D| ≈

ω )
〈M(3/2)a〉

〈M(1/2)a〉3
- 1 )

Γ{[h + (3/2)a + 1]/m}Γ{(h + 1)/m} 2

Γ{[h + (1/2)a + 1]/m}3
- 1 (17)

ê )
〈M(5/2)a〉

〈M(1/2)a〉5
- 1 )

Γ{[h + (5/2)a + 1]/m} Γ{(h + 1)/m}4

Γ{[h + (1/2)a + 1]/m}5
- 1 (18)

-Jp ) Dpp∇Cp + Dps∇Cs (19a)

-Js ) Dsp∇Cp + Dss∇Cs (19b)

f ) [Γp
(Rp)0) + (Γp

(Rp)1) - Γp
(Rp)0))Rp] erf(y/xΛp) + [1 -

Γp
(Rp)0) - (Γp

(Rp)1) - Γp
(Rp)0))Rp] erf(y/xΛs) (20)

Γp
(Rp)0) )

|D|Λp
-1 - Dss- (Rp/Rs)Dps

|D|(Λp
-1 - Λs

-1)
(21a)

Γp
(Rp)1) )

Dpp + (Rs/Rp)Dsp - |D|Λp
-1

|D|(Λs
-1 - Λp

-1)
(21b)

DA ≡ 〈D-1/2〉-2 ) a0
-2 (10)

ω ≡ 〈D-3/2〉
〈D-1/2〉3

- 1 ) -3
a1

a0
3

(11)

ê ≡ 〈D-5/2〉
〈D-1/2〉5

- 1 ) -10
a1

a0
3

+ 10
a2

a0
5

(12)

wk ) ml(q+1)/m

Γ[(h + 1)/m]
khe-lkm

(13)

〈k〉 )
Γ[(h + 2)/m]

l1/mΓ[(h + 1)/m]
(14)

Mh w/Mh n )
Γ[(h + 2)/m]Γ(h/m)

Γ[(h + 1)/m]2
(15)

Mh z/Mh w )
Γ[(h + 3)/m]Γ[(h + 1)/m]

Γ[(h + 2)/m]2
(16)
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DppDss for most investigated macromolecule-additive systems,
eqs 21a,b can be approximated by

Equations 22a,b allow us to observe that the determination of
Dps mainly relies on the experiment atRp ) 0, while the
determination ofDsp mainly relies on the experiment at
Rp ) 1.

Polydisperse Macromolecular Solute. For macromolecule-
(p)-additive(s)-solvent systems with a polydisperse macro-
molecule, generalized Fick’s first law becomes

The refractive-index profile associated with the free-diffusion
boundary condition is described by

where

with Γs + Σ k)1
N Γk ) 1. The determination of the (N + 1)2

diffusion coefficients from eqs 24a,b is not feasible not only
because of the large number of parameters to experimentally
determine them, but also because theRj values cannot be
changed arbitrarily with respect to one another, contrary toRp

) Σ i)1
∞ Ri. However, we can analyze the experimentalf(y,Rp)

by considering an equivalent ternary system with a monodisperse
macromolecular solute.10 The corresponding four ternary dif-
fusion coefficients will be still valuable for modeling mixing
processes and for the determination of macromolecule-additive
interactions in the presence of mild polydispersity. We will now
show how to approximately convert eq 24 into eq 20, provided
that an appropriate correction is performed. The accuracy of
the ternary diffusion coefficients determined using the proposed
corrective procedure will then be examined using computer
simulations.

CorrectiVe Procedure.Our corrective procedure requires the
introduction of reasonable approximations. They are all based
on the observation that the chief effect of polydispersity on

f(y,Rp) originates from the width of the spectrum of theDii with
i ) 1,2,3,...,N. As for the macromolecule-solvent system, we
shall setRi ) Rp with k ) 1,2,3,...,N, and neglect the cross-
diffusion coefficientsDij with i,j ) 1,2,3,...,N and i * j. The
latter approximation is excellent for dilute macromolecular
solutions. We define the macromolecule main-diffusion coef-
ficient, Dpp, of the equivalent ternary system by settingDpp ≡
(Σ i)1

∞ wiDii
-1/2)-2. This is consistent with the definition of mean

diffusion coefficient shown by eq 10. The cross-diffusion
coefficientsDps and Dsp of the equivalent ternary system are
introduced as follows. We will assume that allDsj’s are equal
to each other and set asDsj ) Dsp. For Dps, we observe that
eachDis is proportional to the correspondingCi. Thus, we set:
Dis ) wiDps.

We will now focus on the two initial conditionsRp ) 0 and
Rp ) 1, for which eqs 25a,b become

Here we will introduce important approximations that will be
examined later by computer simulations. As previously ob-
served, the experiments atRp ) 0 and Rp ) 1 are not
considerably dependent on the values ofDsp andDps, respec-
tively. Thus, we can setDsp ) 0 for the specific experiment at
Rp ) 0, andDps ) 0 for the specific experiment atRp ) 1.
Within this approximation, eqs 26 become

The eigenvector matrices used for obtaining eqs 27a,b from eqs
26a,b are reported in the Appendix. For macromolecules,Dkk

is significantly smaller thanDss. We can therefore writeDkk -
Dss ≈ Dpp - Dss. This approximation allows us to directly
compare eqs 27a,b to eqs 22a,b, and obtain

We can now insert eqs 28a,b into eq 24 and obtain

We are now in position to formally define a corrected refractive-
index function,f *(y,Rp) by

Γp
(Rp)0) ≈ -

(Rp/Rs)Dps

Dss- Dpp
(22a)

Γp
(Rp)1) ≈ 1 -

(Rs/Rp)Dsp

Dss- Dpp
(22b)

-Ji ) ∑
j)1

N

Dij∇Cj + Dis∇Cs with i ) 1,...,N (23a)

-Js ) ∑
j)1

N

Dsj∇Cj + Dss∇Cs (23b)

f ) ∑
k)1

N

Γk erf(y/xΛk) + Γs erf(y/xΛs) (24)

Γk ≡ ∑
i)1

N

∑
j)1

N

(Ri/Rj)(TikTkj
-1)Rj + ∑

i)1

N

(Ri/Rs)(TikTks
-1)Rs +

∑
i ) 1

N

(Rs/Ri)(TskTki
-1)Ri + (TskTks

-1)Rs (25a)

Γs ≡ ∑
i)1

N

∑
j)1

N

(Ri/Rj)(TisTsj
-1)Rj + ∑

i)1

N

(Ri/Rs)(TisTss
-1)Rs +

∑
i)1

N

(Rs/Ri)(TssTsi
-1)Ri + (TssTss

-1)Rs (25b)

Γk
(Rp)0) ) (Rp/Rs) ∑

i)1

N

(TikTks
-1) + (TskTks

-1) (26a)

Γk
(Rp)1) )

∑
i)1

N

∑
j)1

N

(TikTkj
-1)wj + (Rs/Rp) ∑

i)1

N

(TskTki
-1)wi (26b)

Γk
(Rp)0) ≈ wk

(Rp/Rs)Dps

Dkk - Dss
(27a)

Γk
(Rp)1) ≈ wk(1 +

(Rs/Rp)Dsp

Dkk - Dss
) (27b)

Γk
(Rp)0) ≈ wkΓp

(Rp)0) (28a)

Γk
(Rp)1) ≈ wkΓp

(Rp)1) (28b)

f ≈ [Γp
(Rp)0) + (Γp

(Rp)1) -

Γp
(Rp)0))Rp] ∑

k)1

N

wk erf(y/xΛk) + [1 - Γp
(Rp)0) -

(Γp
(Rp)1) - Γp

(Rp)0))Rp] erf(y/xΛs) (29)

f *≡ f - [Γp
(Rp)0) + (Γp

(Rp)1) - Γp
(Rp)0))Rp]Ω (30)
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where Ω≡erf(y/xΛp) - Σ k)1
N wk erf(y/xΛk), and Λp is the

smaller eigenvalue of the matrix of the four ternary diffusion
coefficients. According to eq 29 and eq 30,f *(y,Rp) is ap-
proximately described by eq 20. Hence, we can usef *(y,Rp) to
determine the four diffusion coefficients of the equivalent ternary
system. If the deviation32 Ω0 ) erf(y/xDA) - f is experimen-
tally obtained for the macromolecule-solvent system,Ω(y) can
be then evaluated usingΩ(y/Λp

1/2) ) Ω0(y/DA
1/2). However,

Λp, Γp
(Rp)0), andΓp

(Rp)1) in eq 30 are not known initially. Hence,
the four diffusion coefficients can be obtained fromf *(y,Rp)
using eq 20 by successive approximations by initially setting
Λp ) DA, Γp

(Rp)1) ) 1 andΓp
(Rp)0) ) 0 in eq 30.

Although we have neglected the cross-terms,Dij, it is
important to observe that this approximation is not necessary,
and it has been introduced just to reduce mathematical complex-
ity. The same results could have been obtained by replacing
theDii with the eigenvalues of theN × N diffusion-coefficient
matrix, and theCj with the corresponding eigenvectors. Here,
the only assumption is that these eigenvectors do not change in
the presence of the additive.

Materials and Methods

Materials. Poly(ethylene glycol) samples with average mo-
lecular weights of 2, 8, and 20 kg mol-1 (PEG2k, PEG8k, and
PEG20k, respectively) were purchased from Sigma-Aldrich and
used without further purification. Poly(vinyl alcohol) (PVA, 99%
hydrolyzed) was purchased from Celanese Chemicals. The
viscosity-average molecular weight of PVA,MV, was deter-
mined by viscosity measurements using the Mark-Houwink-
Sakurada equation: [η] ) KMV

a, whereK ) 40 g L-1, a )
0.50, and [η] is the intrinsic viscosity.34 For our sample, [η] )
0.0715 L g-1 and MV ) 57 kg mol-1. Deionized water was
passed through a four-stage Millipore filter system to provide
high-purity water for all the experiments. All solutions were
prepared by weight using a Mettler-Toledo AT400 analytical
balance. Mass concentrations in grams per liter were obtained
from the density of solutions. All density measurements ((1
× 10-5g cm-3) were made with a Mettler-Paar DMA40 density
meter, thermostated with water from a large, well-regulated
((0.001°C) water bath. The Rayleigh interferometry experi-
ments require a pair of solutions with different composition.
For each pair, we report their average mass concentration,Ch
(in g L-1) and the corresponding difference,∆C.

Rayleigh Interferometry. All diffusion measurements were
made with the high-precision Gosting diffusiometer operated
in its Rayleigh interferometric optical mode. A comprehensive
description of the Gosting diffusiometer can be found in ref 19
and the references therein. In brief, a typical diffusion experi-
ment using the Gosting diffusiometer starts with the preparation
of a sharp boundary (using a peristaltic pump) between two
uniform solutions of slightly different solute concentrations
located inside a vertical channel with inside widtha. In our
case, we havea ) 2.5057 cm. The light source used for
generating the Rayleigh interference pattern is a He-Ne
Uniphase laser with wavelengthλ ) 543.5 nm. A cell holder is
located inside a water bath. The temperature of the bath was
regulated ((0.001 °C) at 25.00°C. The cell holder has the
function to support a Tiselius cell, where diffusion occurs, and
a mask, which consists of a double window. Here the laser beam
is split into two parts: one going through the diffusion channel
of the Tiselius cell and one passing through the water bath
(reference channel). A pair of cylinder lenses focuses the
diffusion channel onto the detector, where the Rayleigh interfer-
ence pattern is observed and recorded. Rayleigh fringes shift

horizontally as the refractive index inside the diffusion channel
changes with vertical height. This gives direct information about
refractive index versus vertical position. The difference in
refractive index,∆n, between the two solutions is obtained from
the total number of fringesJ using∆n ) Jλ/a.30 The reported
values of refractive-index increment,R, are calculated usingR
) ∆n/∆C.

The refractive-index profile inside the vertical channel, which
is represented byf(y) ≡ 2(n - nj)/∆n, is extracted from the
Rayleigh interference fringes at several times during boundary
spreading. We have examined only the values off within the
range 0.30e f e0.86, taking into account the recommendation
of Miller and Albright.30 We have then calculateds ) erfinv-
(f)/y. The values of the parametersa0, a1, anda2 in eq 6 were
obtained by linear extrapolation toy2 ) 0 of the functionss, (s
- a0)/y2, and (s - a0 - a1y2)/y4, respectively. Figure 1a-c
illustrate our approach. The range ofy2 was decreased until the
values ofa0, a1, anda2, determined by linear extrapolation, were
found to fluctuate within the experimental error. The relative
standard deviations ofa0, a1, anda2 were found to be on the

Figure 1. Determination of the parameters:a0, a1, anda2 by linear
extrapolation (solid lines) toy2 ) 0 of the functions:s (A), (s - a0)/y2

(B) and (s - a0 - a1y2)/y4 (C), respectively. The illustrated case
corresponds to the PVA-water system atC ) 5.96 g L-1. The
extrapolated values and the corresponding standard deviations are
included.
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order of 0.01%, 0.1%, and 1%, respectively. We expect,
however, that the actual errors are about 1 order of magnitude
higher, due to other sources of errors such as boundary
imperfections, aberration, the concentration dependence of
diffusion coefficients, and solution preparation. The values of
DA, ω, andê were then calculated using eqs 10-12.

Dynamic Light Scattering. Measurements of dynamic light
scattering were performed at 25.0( 0.1 °C. PEG-water
samples were filtered through a 0.02-µm filter (Anotop 10,
Whatman). PVA-water samples were filtered through a 0.2µm
filter (Anotop 10, Whatman) because of the presence of large
clusters that clog the 0.02-µm filters. The experiments were
performed on a light scattering apparatus built using the
following main components: a He-Ne laser (35 mW, 632.8
nm, Coherent Radiation), a manual goniometer and thermostat
(Photocor Instruments), a multi-tau correlator, and an APD
detector and software (PD4042, Precision Detectors).

In a typical DLS geometry, light coming from a laser is
scattered by a sample and is collected at a given angle,θ (usually
90°) by a photodetector. The scattering angle defines the
direction of the scattering vector:q ) (4πn/λ0) sin(θ/2), where
λ0 is the wavelength of light in vacuum andn is the refractive
index of the sample.6 The scattered-intensity correlation func-
tions were analyzed using a regularization algorithm (Precision
Deconvolve 32, Precision Detectors). The application of regu-
larization to the experimental correlation function is described
in ref 38 and the references therein.

Computer Simulations. Computer simulations were per-
formed using Matlab R2006a. We have simulated, to some
extent, the actual experimental data-acquisition procedure
employed on the Gosting diffusiometer. We have computed
f(y,Rp) for a polydisperse macromolecule(p)-additive(s)-
solvent system with knownRp/Rs and (N + 1) × (N + 1)
diffusion-coefficient matrix. The four diffusion coefficients for
the equivalent ternary system were defined for this system. For
a givenRp value, we have generated 3000 equidistanty/D′1/2

values, where 1/D′1/2 ) Rp/Dpp
1/2 + (1 - Rp)/Dss

1/2, and 0ey/
D′1/2 e 5. We then computedf(y,Rp) + δf, where f(y,Rp) is
obtained using eq 24, andδf is a random error sampled from a
normal distribution with standard deviation 5× 10-5. This value
falls within the range of statistical errors observed experimen-
tally. Using eq 2, we then computedf(y,1) + δf and, conse-
quently, Ω0 ) erf(y/DA

1/2) - (f + δf) for the corresponding
macromolecule-solvent system with known diffusion-coef-
ficient matrix. The source of error,δf, was included in order to
differentiate between systematic errors associated with our
approximate procedure and random errors associated with fitting
sensitivity. To determine the four ternary diffusion coefficients,

we applied the method of nonlinear least-squares to the
uncorrected and the corrected values off(y,Rp) + δf for two
chosenRp values and 0.30e f e0.86 using eq 20. The relative
differences between the determined and the actual ternary
diffusion coefficients were calculated for the uncorrected and
corrected cases. By repeating each simulation 10 times, we have
reported the mean values of the relative differences. To
characterize statistical uncertainty, we have also included the
corresponding confidence intervals using the student’st test with
95% confidence level. These values describe the statistical errors
associated with the obtained relative differences.

Results and Discussion

Effect of Macromolecule Polydispersity on Diffusion
Coefficients of Macromolecule-Solvent Systems.Determi-
nation of DA, ω, andê for Polymer-SolVent Systems.We have
performed diffusion measurements on PEG-water (PEG2k,
PEG8k, and PEG20k) and PVA-water systems at 25°C and
several concentrations. In Table 1, we report the corresponding
experimental values ofDA, ω, andê. In all cases, we have found
thatω andê are virtually independent of polymer concentration
within the experimental error. As a diagnostic, we have also
included the values of refractive-index increment,R. In the case
of PEG, we have found that the differences between theRvalues
are all smaller than about 2%. We can therefore conclude that
R is virtually independent of PEG molecular weight.

For all three PEG systems, the values ofω (ω < 0.02) are
significantly smaller than those found for the PVA system (ω
≈ 0.35). These results are expected since PEG approximately
follows the narrow Poisson distribution, whereas PVA is
expected to approximately follow the broader Flory distribution
function.33,34 However, using eq 18 withm ) h ) 1 anda )
0.50, we predictω ) 0.106 for PVA. This value is significantly
lower than that obtained from our diffusion measurements. This
apparent discrepancy can be understood by taking into consid-
eration that PVA forms clusters in aqueous solutions.39,40

Clearly, these clusters have significantly lower diffusion coef-
ficients. Thus, the presence of PVA free chains together with
clusters can produce a significant increase in polydispersity. Our
DLS measurements on PVA-water solutions, which will be
discussed later, confirm the presence of clusters.

The accuracy of ourω and ê values can be examined by
performing diffusion measurements on polydisperse PEG mix-
tures with known weight distribution,wk. Since our PEG-water
systems are nearly monodisperse, we have performed diffusion
measurements on four PEG mixtures using the three different
PEG molecular weights reported in Table 1. Our experimental
values ofDA, ω, andê are reported in Table 2. We have also

TABLE 1: Mean Diffusion Coefficients, DA, and Polydispersity Indices,ω and ê, for Polymer-Water Systems

polymer Ch /(g L-1) ∆C/(g L-1) R/(g-1 mL) DA /(10-5 cm2 s-1) ω ê

PEG2k 1.820 3.242 0.1320 0.1907 0.017
PEG2k 3.443 6.488 0.1319 0.1908 0.000
PEG2k 5.193 9.987 0.1321 0.1912 0.002
PEG8k 1.821 3.242 0.1339 0.08727 0.019
PEG8k 3.426 6.452 0.1350 0.08897 0.007
PEG8k 5.193 9.986 0.1338 0.09028 0.003
PEG20k 1.821 3.242 0.1343 0.05886 0.019
PEG20k 3.443 6.488 0.1342 0.05969 0.015
PEG20k 5.193 9.987 0.1342 0.06143 0.013
PEG20k 9.990 9.998 0.1345 0.06586 0.018
PEG20k 20.010 10.023 0.1342 0.07501 0.015
PVA 1.821 3.243 0.1437 0.02407 0.346 1.45
PVA 3.445 6.491 0.1439 0.02374 0.345 1.50
PVA 5.196 9.993 0.1440 0.02339 0.344 1.52
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calculated these three parameters by applying eqs 10-12 to the
experimentalwk in Table 2 and the corresponding PEG diffusion
coefficients of Table 1 atwkCh . These values, which are also
reported in Table 2, were found to be systematically smaller
than the experimental ones. This difference ranges from 0.005
to 0.03 forω, and from 0.03 to 0.22 forê. Clearly, only part of
this discrepancy can be attributed to the small polydispersity
of individual PEG samples. We therefore estimate that the
accuracies ofω andê are∼0.01 and∼0.1, respectively.

Comparison between Rayleigh Interferometry and Dynamic
Light Scattering.We have also performed DLS measurements
on PEG20k-water and PVA-water systems at 25°C. Our DLS
results will be directly compared with those obtained by
Rayleigh interferometry. It is, however, worthwhile to first
briefly review some theoretical aspect of DLS relevant to the
comparison between these two different techniques and to
polydispersity.

The DLS technique yields the electric-field correlation
function g(1)(τ) ) 〈E(t)E*(t + τ)〉 /〈E(t)E*(t)〉 associated with
stochastic temporal fluctuations of the electric field,E(t),
scattered at a given angle defined by the scattering vectorq
(see Materials and Methods).6 In the commonly employed
homodyne mode, this is achieved by monitoring the temporal
fluctuations of light intensityI(t) at the scattering angle. For a
polydisperse particles in dilute solution, we can write7

where (iS)k ) Pk(q)wkMk is the light-scattering contribution of
the macromolecular componentk, and Pk(q) e1 is its form
factor. Theγk(q) values are relaxation rates that generally take
into account not only particle center-of-mass diffusion but also

other,q-dependent, dynamic features (e.g., rotational diffusion
of anisotropic particles) of individual particles. If the charac-
teristic size of the particles is small compared toq-1, thenPk-
(q) ) Pk(0) ) 1 andγk(q) ) γk(0) ) q2Dk. Moreover,γk(q)
can be assumed to be equal toq2Dk, even for large particles,
provided that they do not display significant anisotropy. We
shall adopt this assumption. The cumulant analysis introduced
by Koppel41 describes polydisperse systems in terms of DLS-
based diffusion moments. This analysis, which is analogous to
that outlined above for Rayleigh interferometry, is based on the
following power series expansion:

where

and

Figure 2. Mean diffusion coefficients:DDLS (O) andDA (b) for the
PEG20k-water system as a function of polymer concentration,C. Solid
lines are linear fits through the data.

TABLE 2: Experimental (exp) and Calculated (calc) Values
of DA, ω, and ê for PEG-Water Polydisperse Systems

Ch /(g L-1) 3.643 3.643 3.643 5.467
w (PEG2k) 0.5000 0.0000 0.5000 0.3333
w (PEG8k) 0.5000 0.5000 0.0000 0.3333
w (PEG20k) 0.0000 0.5000 0.5000 0.3333
∆C/(g L-1) 6.488 6.488 6.489 9.739
R/(g-1 mL) 0.1332 0.1343 0.1334 0.1336
DA/ (10-5 cm2 s-1) (exp) 0.1265 0.07387 0.09960 0.09572
ω (exp) 0.117 0.048 0.275 0.172
ê (exp) 0.41 0.16 1.07 0.58
DA/ (10-5 cm2 s-1) (calc) 0.1242 0.07098 0.09730 0.09377
ω (calc) 0.112 0.029 0.245 0.156
ê (calc) 0.38 0.10 0.85 0.52

g(1)(τ) ) ∑
k)1

N

(iS)ke
-γk(q)τ (31)

Figure 3. Mean diffusion coefficients,DDLS (O), DDLS
(f) (]), DDLS

(s) (0)
andDA (b) for the PVA-water system. (A) Mean diffusion coefficients
as a function of polymer concentration,C at the 90° scattering angle.
(B) Mean diffusion coefficients as a function ofq2 at C ) 3.45 g L-1.
Solid lines are linear fits through the data.

ln g(1)(τ) ) -q2τ ∑
i)0

∞ (-1)i

(i + 1)!
bi(q

2τ)i (32)

〈D〉z ) b0

〈D2〉z ) b0
2 + b1

〈D3〉z ) b0
3 + 3b0b1 + b2 (33)

〈Dn〉z ≡
∑
k)1

N

Pk(q)wkMkDk
n

∑
k)1

N

Pk(q)wkMk

(34)
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The DLS mean diffusion coefficient,DDLS, is the z-average
diffusion coefficient:7

Polydispersity can be quantified using the diffusion momenta
of higher order. For example, the relative variance

is used as the DLS polydispersity index. One important feature
of DLS compared to classical techniques is that, according to
eq 34, high-molecular weight components contribute more
significantly toDDLS than toDA. Hence it is expected thatDA/
DDLS > 1 for polydisperse systems.

In Figure 2, we show the values ofDA and DDLS obtained
for PEG20k-water binary solutions. The DLS data were
obtained at the 90° scattering angle. We find thatDA/DDLS )
1.04 within our experimental concentration range. To estimate
the contribution of PEG polydispersity toDA/DDLS, we have
first determined the scaling factor,a, by reporting ourDA values
as a function of PEG molecular weight. We have obtaineda )
0.53 in agreement with literature. We have then constructed
the wk distribution function using eq 13 withm ) 1 andh )
12. This distribution corresponds toω ) 0.016 consistent with
the ω values reported in Table 1 for PEG20k. We have not

used the Poisson distribution because its correspondingω value
(ω ) 5 × 10-4) was very low compared to our experimental
results. Using eq 10 and eq 35, we have then calculatedDA/
DDLS ) 1.025. Here we have assumedPk(q) ) 1 since the size
of PEG20k molecules is small compared toq-1. This estimation
on polydispersity allows us to conclude that theDDLS values
agree with theDA values obtained by Rayleigh interferometry
within an acceptable error of about 2%.

Interestingly, a large discrepancy betweenDA and DDLS

experimental values were observed for the PVA-water system.
For the DLS technique, the well-established regularization
algorithm38 was applied to eq 31 for the determination of the
(iS)k distribution of diffusion coefficients,Dk. We have found
that (iS)k consists of two well-separated peaks and calculated
the corresponding two mean diffusion coefficients,DDLS

(f) and
DDLS

(s) , using eq 35. The values ofDDLS
(f) are consistent with the

size of PVA molecules (∼10 nm). However, the values of
DDLS

(s) are significantly lower and correspond to the PVA
clusters (∼100 nm) mentioned above. In Figure 3a, we show
the DDLS, DDLS

(f) , DDLS
(s) values obtained at the 90° scattering

angle together with the correspondingDA values reported in
Table 1. We find thatDA/DDLS ≈ 5 within our experimental

TABLE 3: Relative Percentage Differences forDpp, Dps, Dsp, and Dss, with Dps/Dss ) Dsp/Dss ) 1/100

Dpp/Dss) 1/10 Dpp/Dss) 1/5 Dpp/Dss) 1/2

ω uncorrected corrected uncorrected corrected uncorrected corrected

Dpp

0.000 0.00( 0.01a 0.00( 0.01 0.01( 0.01 0.00( 0.01 0.01( 0.02 0.00( 0.02
0.025 1.80( 0.01 0.01( 0.01 2.34( 0.01 0.01( 0.01 4.81( 0.02 0.06( 0.03
0.050 3.50( 0.01 0.01( 0.01 4.58( 0.01 0.03( 0.01 9.32( 0.02 0.15( 0.03
0.100 6.67( 0.01 0.02( 0.01 8.73( 0.01 0.05( 0.01 17.51( 0.02 0.37( 0.03
0.200 12.24( 0.01 0.06( 0.01 16.03( 0.01 0.11( 0.01 31.50( 0.02 1.18( 0.05

Dps

0.000 -0.1( 0.2 -0.1( 0.2 0.1( 0.2 0.0( 0.2 0( 1 0 ( 1
0.025 0.1( 0.2 -0.2( 0.2 0.6( 0.2 0.0( 0.2 1( 1 5 ( 2
0.050 0.1( 0.2 -0.4( 0.2 1.0( 0.2 0.1( 0.2 0( 1 7 ( 1
0.100 0.5( 0.2 -0.5( 0.2 1.5( 0.2 0.3( 0.2 -1 ( 1 13( 1
0.200 1.0( 0.2 -0.6( 0.2 2.4( 0.2 1.9( 0.2 -1 ( 1 23( 1

Dsp

0.000 -0.1( 0.3 0.3( 0.7 -0.3( 0.5 -0.2( 0.6 -1 ( 2 -1 ( 2
0.025 -134.1( 0.4 -0.4( 0.4 -182.3( 0.6 -0.6( 0.9 -419( 1 -5 ( 2
0.050 -262.5( 0.5 -0.8( 0.7 -357.3( 0.4 -2.2( 0.6 -813( 1 -13 ( 2
0.100 -504.9( 0.6 -1.5( 0.6 -685.6( 0.7 -3.8( 0.8 -1532( 1 -32 ( 2
0.200 -940.8( 0.3 -4.0( 0.4 -1271.3( 0.4 -8.2( 0.7 -2764( 1 -100( 4

Dss

0.000 0.000( 0.004 0.003( 0.004 -0.002( 0.004 -0.001( 0.003 0.00( 0.02 0.00( 0.01
0.025 -0.007( 0.003 -0.001( 0.003 -0.013( 0.004 -0.010( 0.004 -0.01( 0.02 -0.08( 0.03
0.050 -0.014( 0.002 -0.003( 0.003 -0.023( 0.003 -0.020( 0.004 0.00( 0.01 -0.13( 0.01
0.100 -0.030( 0.003 -0.012( 0.003 -0.036( 0.005 -0.041( 0.004 -0.01( 0.01 -0.23( 0.01
0.200 -0.040( 0.003 -0.037( 0.003 -0.052( 0.005 -0.106( 0.004 -0.01( 0.01 -0.40( 0.01

a Confidence intervals using the student’st test with 95% confidence level as described in Materials and Methods.

TABLE 4: Relative Percentage Differences onDsp for
Dpp/Dss ) 1/10 andDps/Dss ) 1/100

ω
Dsp/Dss)
1/1000

Dsp/Dss)
1/100

Dsp/Dss)
1/10

Dsp/Dss)
-1/100

0.000 3( 4 0.3( 0.7 0.01( 0.03 0.0( 0.7
0.025 0( 6 -0.4( 0.4 -0.41( 0.05 -0.5( 0.7
0.050 0( 7 -0.8( 0.7 -0.87( 0.04 -0.6( 0.6
0.100 -5 ( 7 -1.5( 0.6 -1.81( 0.03 -1.4( 0.6
0.200 -3 ( 6 -4.0( 0.4 -3.77( 0.04 -3.4( 0.4

DDLS ≡ 〈D〉z ) b0 (35)

σ2 ≡ 〈D2〉z

〈D〉z
2

- 1 )
b1

b0
2

(36)

TABLE 5: Relative Percentage Differences onDsp for
Dpp/Dss ) 1/10 andDps/Dss ) Dsp/Dss ) 1/100

ω Rp ) 0.2,0.8 Rp ) 0.5,1 Rp ) 0,0.5

Dpp/Dss) 1/10
0.000 0.1( 0.3 -0.1( 0.2 0.1( 0.5
0.025 -0.6( 0.3 -0.5( 0.3 0.0( 0.4
0.050 -0.9( 0.3 -0.9( 0.2 -0.9( 0.7
0.100 -2.0( 0.4 -1.9( 0.2 -1.9( 0.4
0.200 -4.1( 0.4 -4.6( 0.2 -3.9( 0.3

Dpp/Dss) 1/2
0.000 0( 2 -1 ( 3 0 ( 2
0.025 -6 ( 2 -6 ( 3 -6 ( 2
0.050 -14 ( 2 -14 ( 2 -14 ( 2
0.100 -35 ( 3 -34 ( 4 -32 ( 2
0.200 -106( 3 -124( 5 -99 ( 2
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concentration range. We also observe thatDDLS is closer to
DDLS

(s) , whereasDA is closer toDDLS
(f) . SinceDDLS

(s) corresponds to
very large clusters, thePk(q) values at 90° are expected to be
appreciably smaller thanPk(0) ) 1. We have therefore
performed DLS measurements at several angles. Our results are
shown in Figure 3b for PVA at the representative concentra-
tion: C ) 3.45 g L-1. As expected, we can see thatDDLS

(f) is
independent ofq2 within the experimental error. On the other
handDDLS

(s) increase withq2. This occurs because a large cluster
l contribute less toDDLS

(s) compared to small clusterss, due the
corresponding more significant decrease ofPl(q) compared to
Ps(q) as q2 increases. Hence, in the limit ofq approaching
zero, discrepancy betweenDA andDDLS was found to be even
larger (DA/DDLS ≈ 10). In conclusion this comparison clearly
illustrates how DLS and Rayleigh interferometry provide two
significantly different results for macromolecules with large
polydispersity.

Effect of Macromolecular Polydispersity on Ternary
Diffusion Coefficients of Macromolecule-Additive-Solvent
Systems.Simulation on a Model Polydisperse System.We have
described an approximate procedure to obtain the four ternary
diffusion coefficients from macromolecule(p)-additive(s)-
solvent systems in the presence of polydispersity. Here we
examine its accuracy using computer simulations (see Materials
and Methods) on a model polydisperse system. We consider a
simple macromolecular solute consisting of three macromo-
lecular components with weight fractionsw1 ) 1/6, w2 ) 2/3,
and w3 ) 1/6. The corresponding three main-diffusion coef-
ficients areDpp/(1 + ω1/2)2, Dpp, and Dpp/(1 - ω1/2)2, where
Dpp is their mean diffusion coefficient andω the polydispersity
index previously defined by eq 11. The diffusion-coefficient
matrix for this model system is

whereDpp, Dps, Dsp, andDss are the diffusion coefficients of
the equivalent ternary system. For the corresponding macro-
molecule-solvent system, we have assumed the following
diffusion-coefficient matrix:

whereη is a coefficient that takes into account the effect of the
additive on the macromolecule diffusion coefficients. We have
found thatη has a negligible effect on our results. Hence, we
will assumeη ) 1 in the following discussion.

We have calculated the relative deviations of the determined
diffusion coefficients with respect to their actual values as a
functionω with 0 e ω e 0.2. We note thatω ) 0.2 corresponds
to Mw/Mn ) 3.5 for our model system anda ) 0.5. This analysis
was performed for several values ofDpp/Dss, Dsp/Dss andDps/
Dss using f(y,Rp) with Rp ) 0 and Rp ) 1. In Table 3, we
examine the effect of polydispersity on the accuracy of all
four diffusion coefficients as a function ofDpp/Dss for the
representative caseDsp/Dss ) Dps/Dss ) 1/100. The relative
percent deviations (and corresponding statistical errors) were
obtained for both uncorrected and corrected refractive-index
profiles. We observe that reported deviations increase asDpp/
Dss approaches to one. This is expected since our corrective
procedure becomes more accurate asDpp becomes small
compared toDss.

We can see that polydispersity has a negligible effect onDss

accuracy for the uncorrected and corrected cases. ForDps, we
find that polydispersity also produces a marginal discrepancies
(e2%). However, we observe that our corrective procedure
improves the accuracy of this coefficient for the cases withDpp/
Dss e 1/5 and fails to work for the case withDpp/Dss ) 1/2. In
general, we have found that polydispersity has a marginal effect
on the accuracy of the determinedDss andDps values. On the
other hand, the accuracy of the determinedDpp andDsp values
is significantly improved when using our corrective procedure.

TABLE 6: Relative Percentage Differences onDsp for Dsp/Dss ) 1/100

ω Dpp/Dss) 1/100 Dpp/Dss) 1/10 Dpp/Dss) 1/5 Dpp/Dss) 1/4 Dpp/Dss) 1/3 Dpp/Dss) 1/2

Dps/Dpp ) -1/5
0.000 0.0( 0.3 -0.6( 0.7 -0.4( 0.8 0( 1 1 ( 1 0 ( 2
0.025 0.0( 0.3 -0.1( 0.4 -0.6( 0.8 0( 1 -2 ( 1 -5 ( 2
0.050 0.2( 0.5 -0.3( 0.9 -1.4( 0.8 -2 ( 1 -3 ( 1 -12 ( 3
0.100 0.1( 0.3 -0.3( 0.5 -2.2( 0.8 -3 ( 1 -7 ( 1 -32 ( 3
0.200 0.7( 0.3 -1.2( 0.4 -5.6( 0.9 -8 ( 1 -18 ( 1 -132( 5

Dps/Dpp ) 0
0.000 0.0( 0.3 0.1( 0.5 0.5( 0.8 0( 1 0 ( 1 0 ( 2
0.025 0.0( 0.3 -0.2( 0.6 -0.6( 0.7 -1 ( 2 -2 ( 2 -6 ( 3
0.050 0.1( 0.3 -1.3( 0.5 -1.8( 0.9 -3 ( 1 -5 ( 1 -14 ( 2
0.100 -0.1( 0.4 -1.9( 0.6 -3.6( 0.6 -6 ( 1 -9 ( 1 -31 ( 3
0.200 -0.4( 0.2 -2.7( 0.3 -7.5( 0.7 -11 ( 1 -22 ( 1 -103( 3

Dps/Dpp ) 1/5
0.000 0.1( 0.4 0.1( 0.6 0.2( 0.9 0( 1 0 ( 1 1 ( 2
0.025 -0.2( 0.2 -0.8( 0.5 -1.2( 0.7 -1 ( 1 -2 ( 1 -7 ( 1
0.050 -0.2( 0.4 -1.2( 0.6 -1.9( 0.8 -3 ( 1 -4 ( 1 -14 ( 1
0.100 -0.7( 0.4 -2.2( 0.7 -5.0( 0.7 -6 ( 1 -11 ( 1 -31 ( 2
0.200 -1.5( 0.3 -4.3( 0.3 -9.7( 0.9 -13 ( 1 -25 ( 1 -90 ( 3

[D11 D12 D13 D1s

D21 D22 D23 D2s

D31 D32 D33 D3s

Ds1 Ds2 Ds3 Dss
])

[Dpp/(1 + ω1/2)2 0 0 w1Dps

0 Dpp 0 w2Dps

0 0 Dpp/(1 - ω1/2)2 w3Dps

Dsp Dsp Dsp Dss
] (37)

[D11 D12 D13

D21 D22 D23

D31 D32 D33
])

η[Dpp/(1 + ω0.5)2 0 0
0 Dpp 0
0 0 Dpp/(1 -ω0.5)2] (38)

Diffusion Polydispersity by Rayleigh Interferometry J. Phys. Chem. B, Vol. 112, No. 12, 20083641



For Dpp, our correction virtually removes the effect of polydis-
persity completely. ForDpp/Dss ) 1/2 and ω g 0.10, the
discrepancies are larger than 10% without correction and reduce
to 1% or less after the correction is applied. ForDsp, correction
becomes essential even for the lowest polydispersity case:ω
) 0.025 andDpp/Dss ) 1/10. Here the correction reduces the
error from more than 100% to less than 1%. Moreover, our
corrective procedure generally produces discrepancies lower than
10% with the exception of theDpp/Dss ) 1/2 cases withω
g0.05. In the following analysis, we will focus on this diffusion
coefficient, since the accuracy ofDsp is significantly affected
by polydispersity.

We have examined the role ofDsp/Dss magnitude and sign
on the accuracy ofDsp. In Table 4, we can see that the accuracy
of our corrective procedure is not affected by the magnitude
and sign ofDsp/Dss. We observe, however, that the statistical
error of the reported deviations increases as the magnitude of
Dsp/Dss decreases. This is expected since the determination of
Dsp becomes more difficult as the effect of this coefficient
on the refractive-index profile becomes comparable with
statistical noise. In Table 5, we have examined the effect of
different choices ofRp pairs on the accuracy of our results
for the representative two cases:Dpp/Dss ) 1/10,1/2 with
Dsp/Dss ) Dps/Dss ) 1/100. These results can be directly
compared with those in Table 3. We find that the choice ofRp

pair has a marginal effect on the accuracy of the corrective
procedure.

Finally, Table 6 provides a broad spectrum of relative
difference forDsp. We report several cases within the ranges
1/1000e Dpp/Dss e 1/2 and-1/5 e Dps/Dpp e 1/5. We notice
that the accuracy of our corrective procedure improves asDps/
Dpp from positive becomes negative. In all examined cases,Dpp/
Dss remains the most important factor affecting the accuracy of
our corrective procedure.

Summary and Conclusions

We have reported novel equations for the extraction of
diffusion moments from the Rayleigh interferometric pattern.
We have experimentally determined mean diffusion coefficients
and two polydispersity parameters for aqueous solutions of PEG
and PVA at 25°C. Aqueous solutions of PEG mixtures were
used to examine the accuracy of the polydispersity parameters.
We have found that the accuracies ofω andê are∼0.01 and
∼0.1, respectively. We have compared diffusion coefficients
obtained using Rayleigh interferometry and dynamic light
scattering. We have found that these two techniques are in good
agreement with each other in the case of PEG20k, which is a
polymer with a very low polydispersity. On the other hand, we
have found a significant discrepancy between these two
techniques in the case of PVA due to the presence of polymer
clusters, which are responsible for a large diffusion polydis-
persity. Finally, for two-solute mixtures with one polydisperse
solute, we have reported a novel corrective procedure for
extracting accurate ternary diffusion coefficients from Rayleigh
interferometry. Our computer simulations show that polydis-
persity has a small effect on the accuracy ofDss, Dpp, andDps.
On the other hand, the values ofDsp are significantly affected
by polydispersity. The accuracy of our corrective procedure is
very good whenDpp/Dss is small (∼0.1). This condition is

normally satisfied for polydisperse macromolecules in the
presence of additives with low molecular weight.
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Appendix

Eigenvector Matrices Used in the Corrective Procedure.
For the macromolecule(p)-additive(s)-solvent system, the
eigenvectors of the diffusion-coefficient matrix are obtained by
solving the following eigenvalue equation:

For our corrective procedure, we assume thatDij ) 0 with i,j
) 1,2,...,N and i * j; Dis ) wiDps with i ) 1,2,...,N; andDsj )
Dsp with j ) 1,2,...,N.

Equations 27 were obtained by settingDsp ) 0 for Γk
(Rp)0),

andDps ) 0 for Γk
(Rp)1). The eigenvector matrix used for the

Γk
(Rp)0) case is

and its inverse is

The eigenvector matrix used for theΓk
(Rp)1) case is

[D11 D12 D13 ... D1N D1s
D21 D22 D23 ... D2N D2s

D31 D32 D33 ... D3N D3s

... ... ... ... ... ...
DN1 DN2 DN3 ... DNN DNs

Ds1 Ds2 Ds3 ... DsN Dss

] ×

[T1k

T2k

T3k

...
TNk

Tsk

] ) Λk[T1k

T2k

T3k

...
TNk

Tsk

] with k ) 1,2,3...,N, s (A1)

T(Rp)0) ) [1 0 0 ... 0 w1 Dps/(Dss- D11)
0 1 0 ... 0 w2 Dps/(Dss- D22)
0 0 1 ... 0 w3 Dps/(Dss- D33)
... ... ... ... ... ...
0 0 0 ... 1 wN Dps/(Dss- DNN)
0 0 0 ... 0 1

] (A2)

(T(Rp)0))-1 ) [1 0 0 ... 0 -w1 Dps/(Dss- D11)
0 1 0 ... 0 -w2 Dps/(Dss- D22)
0 0 1 ... 0 -w3 Dps/(Dss- D33)
... ... ... ... ... ...
0 0 0 ... 1 -wN Dps/(Dss- DNN)
0 0 0 ... 0 1

] (A3)
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T(Rp)1) ) [-(Dss- D11)Dsp 0 0 ... 0 0
0 -(Dss- D22)Dsp 0 ... 0 0
0 0 -(Dss- D33)Dsp ... 0 0
... ... ... ... ... ...
0 0 0 ... -(Dss- DNN)Dsp 0
1 1 1 ... 1 1

] (A4)

(T(Rp)1))-1 ) [-Dsp(Dss- D11) 0 0 ... 0 0
0 -Dsp(Dss- D22) 0 ... 0 0
0 0 -Dsp(Dss- D33) ... 0 0
... ... ... ... ... ...
0 0 0 ... -Dsp(Dss- DNN) 0
Dsp(Dss- D11) Dsp(Dss- D22) Dsp(Dss- D33) ... Dsp(Dss- DNN) 1

] (A5)

Diffusion Polydispersity by Rayleigh Interferometry J. Phys. Chem. B, Vol. 112, No. 12, 20083643


