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BSTRACT

 

: Equations are presented that model diffusion of a protein to the
surface of a growing crystal in a convection-free environment. The equations
apply to crystal growth solutions that contain both a protein and a protein pre-
cipitant. The solutions are assumed ternary and the equations include all four
diffusion coefficients necessary for the full description of the diffusion process.
The four diffusion coefficients are assumed constant. Effects of crystal/solution
moving boundary and the effect of a protein adsorption barrier at the crystal
interface are included. The equations were applied to the system lysozyme
chloride + NaCl + H

 

2

 

O, which has served as the primary model system for the
study of crystal growth of proteins and for which there are now published ter-
nary diffusion coefficients. Calculated results with and without the inclusion of
cross-term diffusion coefficients are compared.
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INTRODUCTION

 

Obtaining protein crystals of good structural quality is often the main issue for
three dimensional, atomic resolution structure studies of biological macromolecules.
Crystallization is an intrinsically non-equilibrium process, and concentration gradi-
ents occur around the crystal. The protein crystallizes, reducing its concentration at
the moving face of the growing crystal. This creates a protein gradient between the
bulk solution and the crystal. This gradient, in turn, causes multicomponent diffusive
transport of protein and precipitant. The salt may move toward or away from the
crystal face due to the concentration gradient of the protein adjacent to the crystal
face and depending on the sign of 

 

D

 

21

 

.

 

1–3

 

 The gradients produced are related to sev-
eral mechanisms: both the intrinsic kinetic rates of crystal growth and transport to
the crystal surface determine the path the system takes toward equilibrium. Any vari-
able, whose change modifies those processes, changes the properties of the resultant
final crystal.
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Crystallization experiments conducted under microgravity conditions have yield-
ed protein crystals that provide diffraction data of significantly higher resolution
than the best crystals of these proteins grown under normal gravity conditions.

 

3

 

Since a clear difference between microgravity and normal gravity based experiments
is the magnitude of the buoyancy forces in the solution, the role of convection in pro-
tein crystal growth is of great interest.

Lin 

 

et al.

 

2

 

 have analyzed, by numerically modeling lysozyme crystal growth, the
difference between the concentration fields that occur at 0

 

g

 

 and 1

 

g

 

 around a crystal.
With convection, the lysozyme concentration in the bulk solution is more uniform.
At 0

 

g

 

, a concentration depletion zone of considerable width develops about the
growing crystal. Such boundary layers, in which the probability for nucleation of
parasitic crystals is strongly reduced, have often been cited as a reason for obtaining
better protein crystal in microgravity. Lin 

 

et al.

 

2

 

 also raised the issue of coupled
transport between protein and precipitant. However, the lack of information on the
protein-salt transport interaction has made it difficult to develop accurate and mean-
ingful models.

In this paper, a mathematical model is developed for describing the concentration
profiles around a growing spherical crystal in a microgravity environment, in which
convection is not considered.

 

GEOMETRY OF THE MODEL

 

The geometry of the model is based on a spherical crystal surrounded by an aque-
ous fluid containing protein and precipitant. This configuration can be prepared
experimentally by adding a crystal to a uniform supersaturated solution in a micro-
gravity environment. However, it is important to note that, due to vibrations on the
spacecraft, the crystal may move within the solution. We do not consider this effect
in the model. The dimensions of the cell are considered large with respect to the size
of the crystal contained inside. Model symmetry, together with other reasonable
assumptions, furnishes analytic solutions of the concentration profiles around the
crystal. In a real experiment, the dimensions of the crystal may not be negligible rel-
ative to the size of the cell, and the crystal shape will not be spherical.

 

4

 

 Nevertheless,
the aim of the model is to highlight the role of the coupled diffusion and relate the
effects to only a few relevant variables.

Fick’s second law is the cardinal equation for the model:

 

(1)

 

Subscript “1” denotes the protein and “2” the precipitant, 

 

c

 

i

 

 is the molar concentra-
tion of species 

 

i

 

, 

 

D

 

ij

 

 denotes a diffusion coefficient (the volume frame reference is
assumed), and 

 

t

 

 is the time. For a spherical crystal, it is convenient to express the
Laplacian in spherical coordinates. In this representation, in fact, the radial distance
from the center of the crystal 

 

r

 

 is the only position variable. We can transform the
concentration Laplacian into

 

5

t∂
∂c1 D11∇2c1 D12∇2c2,+=

t∂
∂c2 D21∇2c1 D22∇2c2.+=
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(2)

 

and by setting 

 

γ

 

i

 

 

 

=

 

 

 

c

 

i

 

r

 

, from 

 

(1)

 

 we obtain

 

(3)

INITIAL CONDITIONS

 

As an initial condition (time 

 

t

 

 

 

=

 

 0), we assume the solution to have uniform con-
centrations of all components throughout; that is,

 

(4)

 

Several partial differential equations can be reduced to ordinary differential equa-
tions by performing the Laplace transformation 

 

L

 

{

 

⋅

 

} that incorporates the initial
conditions. The Laplace transformation of a function 

 

f

 

(

 

t

 

) is defined in the 

 

s

 

 domain
by the following operation:

 

(5)

 

Its application to the concentration quantities gives

 

(6)

 

so that 

 

(1)

 

 becomes

 

(7)

GENERAL SOLUTIONS

 

Define the quantities 

 

µ

 

i

 

 from the following equations:

 

(8)

 

where 

 

E

 

, 

 

F

 

, 

 

G

 

, and 

 

H

 

 (following Fujita and Gosting symbolism

 

6
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(9)

with the determinant

Differentiating (8) with respect to r, we obtain

(10)

Inserting (8) and (10) into (7), we obtain

(11)

Differentiating (11) with respect to r twice, we obtain

(12)

It now remains to uncouple the two differential equations (12) so that µ1 and µ2 do
not depend on each other. From Equations (11) we can write:

(13)

and inserting (13) into (12), we have

(14)
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These are two uncoupled non-homogeneous differential equations. The characteris-
tic equation related to the corresponding homogeneous differential equation, is

(15)

from which we obtain two real negative physical solutions

(16)

From (14) the form of the particular integrals is

(17)

Thus, imposing

from (17), we obtain

(18)

Defining

(19)

the solutions have the following form:

(20)

where the θij values are determined by the boundary conditions. Differentiating (20)
with respect to r twice,

(21)

Substituting (21) into (11),
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(22)

The identity between corresponding coefficients produces

(23)

The reduction to two coefficients, allows us to set

(24)

so that (20) becomes

(25)

and from (8), we obtain:

(26)

BOUNDARY CONDITIONS

Further specialization of integral solutions (26) needs the determination of Ki val-
ues, which are obtained by specifying the boundary conditions. Since we have
assumed the cell is large with respect to the crystal dimensions, the restrictions
imposed by the cell wall are not considered (free diffusion). The only boundary con-
ditions that need to be considered are related to the crystal-solution interface.

The crystal growth rate, da/dt, where a is the crystal radius, is in general a com-
plicated function of the supersaturation σ =  at the crystal interface,
where  is the concentration of the protein at the interface and  is the concen-
tration in equilibrium with the crystal for a given concentration  of the precipitant.
However, in several cases, the growth rate can be reasonably and conveniently
expressed by the following linear function of the supersaturation:2

(27)
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where β is a kinetic constant and σ0 indicates the minimum supersaturation required
for the crystal to grow.

The solutes fluxes,  and , at the interface r = a, are defined by

(28)

The mass balance at the interface is described by the following equations:2

(29)

where  denotes the concentration of solute i in the solid phase, ρs is the solid phase
density, and ρl is the liquid phase density. Balance equations (29) regard the net flux-
es as the difference between the rate of solute insertion into the crystal and the rate
of solutes rejection due to the replacement of the fluid solution with the new crystal-
line phase. Note that since the crystal is growing in the positive r direction, the pro-
tein flux towards the crystal is negative whereas its interface gradient is positive.

Rigorously speaking, the growing crystal gives rise to a moving boundary problem
that will cause changes in a. If the crystal geometry were rectangular, both setting the
frame at the crystal interface and using the free diffusion condition would not give rise
to any loss of rigor in the treatment. However, the spherical geometry associated with
the growing crystal imposes a curvature change that should be taken into account. If
the radius is large and the curvature changes are small relative to the crystal growth
rate, then the approximation of letting a be constant becomes reasonable.2

The analytic expressions for the inverse Laplace transformation are available7 if
the boundary equations can be expressed in the following way:

(30)

where the hi and the  are constants. The expression for these parameters can be
obtaining inserting (27) and (29) into (28),
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(32)

We can see that  is constant if and only if  is constant. From solubility theory
we expect that the protein equilibrium concentration is given approximately by the
following equation:8,9

(33)

where c and k are constants. Since we expect that  is not so different from , we
can reasonably assume that  is roughly constant. We can then write

(34)

The concentration  is small with respect to , whereas the crystal density is only
slightly larger than the solution density, thus2  >> ρs/ρl. We can now reason-
ably assume that h1 is constant and equal to

(35)

The concentration of salt in the solid can be estimated by the repartition constant, α,
defined by the following equation:10

(36)

It is reasonable to assume that h2 is constant and given by

(37)

Note that h1 is always positive because it describes the protein mass transfer. On the
other hand, h2 is negative because the precipitant rejection caused by the crystal
growth is larger than the contribution due to the salt inclusion into the crystal.
Hence, the protein flux is negative, whereas the precipitant flux is positive.

CONCENTRATION PROFILES

From the definition of γi, we can write
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(39)

To obtain the Ki, we need to insert the general solutions into (39). First note that from
(39),

(40)

and

(41)

then, inserting (41) into (39)

(42) 
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(45)

By setting

(46)

we obtain

(47)

where

(48)

(49)

This defines the Ki as functions of s. We can now apply the inverse Laplace trans-
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(51)

and erfc(z) = 1 – erf(z). We finally obtain the analytic expressions for the concentra-
tion profiles

(52)

where:

(53)

RESULTS

For a typical lysozyme crystal growth process in aqueous sodium chloride,
we consider the following experimental conditions and system physicochemical
properties:11–15

FIGURE 1 gives the protein concentration profiles around the crystal for a given
set of time values (1′, 10′, 30′, 2h, 6h, 1day, and 5days). The presence of a depletion
zone around the crystal is visible, and its width is expanding with time. However, the
absence of large salt gradients and the consequent small contribution in the protein
flux gives rise to marginal coupling effects, so that the protein concentration profiles
are well approximated by the uncoupled transport process. Thus, the coefficient D12
is not a relevant parameter for the crystal growth scenario; however, this conclusion
does not preclude the importance of the coefficient during the nucleation stage not
contained in the model.

FIGURE 2 gives the precipitant concentration profiles around the crystal for the
same set of times and for both a coupled and an uncoupled scenario. The salt con-
centration profiles seem to be significantly affected by the interaction of the fluxes,
and at the interfacial concentration, the results seem to be larger for the coupled case.
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A parameter that may quantify the effect of the coupled transport on the precipitant
interfacial concentration is the stationary salt concentration excess defined by

(54)

From FIGURE 2, we see that slight precipitant concentration excesses are present for
the uncoupled case, which are also being caused by the crystal growth wall effect. A

χ
c2

i

c2
0

-----
 
 
 

t ∞→
lim .=

FIGURE 1. Protein concentration profiles around the crystal for time values 1′, 10′,
30′, 2 h, 6 h, 1 day, and 5 days.

FIGURE 2. Precipitant concentration profiles around the crystal for time values 1 ′,
10′, 30′, 2 h, 6 h, 1 day, and 5 days. The solid lines refer to the coupled scenario; the dashed
lines refer to the uncoupled scenario.
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numerical analysis was performed to examine how the relevant system variables
may influence χ. The results were as follows:

1. changing D21/D11 from 0 to 400 changes χ from 1.004 to 1.128;

2. changing D21/D22 from 10 to 30 changes χ from 1.052 to 1.152; and

3. changing σ from 5 to 100 changes χ from 1.030 to 1.072.

Another important variable for the overall crystallization process is the kinetic
Peclet number16 defined by Pek = βδ/D11, where δ is the width of the diffusion layer
and can be estimated from

In our case, the diffusion layer width was found to be roughly 0.1cm. The kinetic
Peclet number is the controlling parameter that gives the relative importance of the
transport mechanism with respect to the incorporation kinetics. For instance, values
of Pek << 0.1 or Pek >> 0.1 indicate, respectively, purely kinetic or transport con-
trolled growth. A numerical analysis shows that changing the kinetic Peclet number
from 0.1 to 10, χ changes from 1.014 to 1.070.

Lin et al.2 reported an incorrect interpretation of the coupling transport between
salt and protein. The coupled transport was attributed to the association between the
macromolecules and the ions giving rise to the depletion of the salt concentration at
the crystal interface. In contrast, this simulation yields an interfacial salt enrichment
that is caused by electrostatic coupling between both ions and excluded volume
effects. Since the partition constant α defined by (36) was used to describe the pre-
cipitant concentration inside the crystal, the model cannot predict non-uniform pre-
cipitant distribution within the solid phase. However, due to the time dependence of
the interfacial precipitant concentration (and of the precipitant chemical potential),
non-uniform precipitant incorporation can be presumed. This may cause strain in the
crystal and ultimately compromise crystal size and quality.

CONCLUSIONS

For the system lysozyme chloride + NaCl + H2O at relatively low protein concen-
trations the effect of the inclusion of cross-term diffusion coefficients does effect the
calculation of precipitant concentration distribution about the growing crystal and
should be included when modeling crystal growth. This will be possible if general
schemes for estimating the diffusion coefficients in multicomponent systems con-
taining a protein become available. However for the model calculations considered
here the effect causes only small changes of crystal face precipitant concentrations,
but this effect could nevertheless be important. Finally, it should be noted that the
diffusion coefficients depend on concentration and that if the diffusion coefficient
changes are sufficiently large within a system, then numerical analysis methods are
necessary. 
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