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Abstract: For ternary systems, we present a method for using measured values of the four ternary diffusion
coefficients and the Onsager reciprocal relations to extract derivatives of solute chemical potentials with respect
to solute molar concentrations. The method is applicable to systems in which the molar concentration of one
solute is very small compared to that of the other, and also small enough that an inverse concentration dependence
dominates certain activity coefficient derivatives. These conditions apply to a large number of aqueous systems
involving macromolecules of biological interest. Unlike other techniques, the present method can be used to
study undersaturated and supersaturated solutions. The approach is illustrated for the lysozyme chloride-
NaCl-H2O system at 25°C, using data reported here for pH 6.0 at 0.60 mM (8.6 mg/mL) lysozyme chloride
and 0.25, 0.50, 0.65, 0.90, and 1.30 M (1.4, 2.8, 3.7, 5.1, and 7.2 wt %) NaCl concentrations, and our earlier
data for pH 4.5 at the same concentrations. We use these solute chemical potential derivatives to compute the
protein cation charge approximately, and to construct a function approximating the derivative of the lysozyme
chloride chemical potential with respect to NaCl concentration, which we integrate over a range of NaCl
concentrations. This provides the change of the lysozyme chloride chemical potential with NaCl concentration
well into the supersaturated region, and hence provides the driving force for nucleation and crystal growth of
lysozyme chloride as a function of the extent of supersaturation. We also compute the diffusion Onsager
coefficients (Lij)0 for each composition at pH 4.5 and 6.0. Binary diffusion coefficients of aqueous lysozyme
chloride at 0.89 mM (12.7 mg/mL) for pH values from 4.0 to 6.0, and at pH 6.0 for concentrations from 0.25
to 1.95 mM (3.6-27.9 mg/mL) are also reported.

Introduction

Thermodynamic properties are typically determined from
measurements in equilibrium or quasi-equilibrium experiments.
However, that need not be the case. For example, binary
diffusion coefficient measurements in dilute solutions have long
been used to compute activity coefficients.1 The use of ternary
diffusion coefficients to determine binding coefficients and other
thermodynamic data is also well established.2-4

Here, we consider a class of ternary systems in which the
molar concentration of one solute is very small compared to
that of the other, and also small enough that an inverse
concentration dependence dominates certain activity coefficient
derivatives. For such systems, we show how the Onsager
reciprocal relations (ORR), along with precision measurements
of ternary diffusion coefficients, can be used to determine
concentration derivatives of the chemical potentials of two
solutes with respect to solute molar concentrations. The approach
is illustrated for lysozyme chloride in aqueous NaCl.

Lysozyme chloride-H2O and lysozyme chloride-NaCl-H2O
systems serve as models in a wide range of protein studies (e.g.,
crystal growth) involving kinetic, transport, and equilibrium
processes, as discussed in ref 5. Multicomponent diffusion is
important in many protein phenomena, including modeling of
diffusion to the surface of a growing crystal. Diffusive transport
is especially important under microgravity conditions, where
buoyancy-driven convective transport is greatly reduced. Other

† Portions of this work were presented at the Annual Meeting of the
American Crystallographic Association in Buffalo, N.Y., May 22-27, 1999.

* To whom correspondence should be addressed. Phone: (817) 257-
6198. Fax: (817) 257-5851. E-mail: albright@gamma.is.tcu.edu.

‡ Texas Christian University.
§ Universitàdi Napoli.
| University of Illinois at Urbana-Champaign.
⊥ Lawrence Livermore National Laboratory.
(1) Harned, H. S.Proc. Natl. Acad. Sci. U.S.A.1954, 40, 551-556.
(2) Paduano, L.; Sartorio, R.; Vitagliano, V.; Albright, J. G.; Miller, D.

G.; Mitchell, J.J. Phys. Chem. 1990, 94, 6885-6888.
(3) Paduano, L.; Sartorio, R.; Vitagliano, V.; Costantino, L.Ber. Bunsen-

Ges. Phys. Chem. 1990, 94, 741-745.
(4) Kim, H. J. Solution Chem. 1974, 3, 271-287.

(5) Albright, J. G.; Annunziata, O.; Miller, D. G.; Paduano, L.; Pearlstein,
A. J. J. Am. Chem. Soc. 1999, 121, 3256-3266.

5916 J. Am. Chem. Soc.2000,122,5916-5928

10.1021/ja993871l CCC: $19.00 © 2000 American Chemical Society
Published on Web 06/08/2000



than the work of Leaist and Hao6-8 in dilute solution and our
recent work5 at higher concentrations relevant to crystal growth,
we are unaware of reliable measurements of multicomponent
diffusion coefficients in protein systems.9 However, virtually
all studies of protein diffusion are conducted in systems with
two or more solutes, and pseudobinary diffusion coefficients
for the protein are insufficient to describe the actual protein
transport. This lack of measured multicomponent diffusion
coefficients for protein systems motivates our systematic
program to measure, interpret, and ultimately predict these
important transport properties. Such data are critical to modeling
of protein crystal growth.5

In an earlier paper,5 we reported precision interferometric
measurements of binary diffusion coefficients for low to mod-
erate concentrations of aqueous lysozyme chloride at 25°C and
pH 4.5, as well as the four elements of the diffusion coefficient
matrix for 0.60 mM (8.6 mg/mL) solutions of lysozyme chloride
in 0.25-1.30 M (1.4-7.2 wt %) aqueous NaCl. At the higher
NaCl concentrations, compositions extended well into the region
in which the solution is supersaturated with respect to lysozyme
chloride. In this paper, we report similar results for this system
at pH 6.0. We also report binary diffusion coefficients of
aqueous lysozyme chloride at 0.89 mM (12.7 mg/mL) as a
function of pH.

We now outline how our earlier data5 and these additional
data at pH 6.0, all at one fixed lysozyme chloride concentration
and covering a range of NaCl concentrations, can be used to
obtain the chemical potential derivatives,µij ≡ ∂µi/∂Cj (i * j),
from diffusion measurements. (A detailed analysis appears
below under the heading Evaluation of theµij.) Here, lysozyme
chloride and NaCl are denoted as solutes 1 and 2, respectively;
Ci is the molarity of solutei; and we have adopted a standard
notation used in diffusion studies for the concentration deriva-
tives of the chemical potentials.10,11 Our procedure is limited
to the case where one solute is very dilute in molar terms
compared to the other. However, our system and many others
of biological interest satisfy this restriction.

In our ternary experiments, the molarity of lysozyme chloride
is small compared to that of NaCl. Thus, as we discuss below,
the self-derivative for lysozyme chloride,µ11, is dominated by
its concentration term, with smaller contributions from the
charge and activity coefficient derivative terms. The self-
derivative for NaCl,µ22, is essentially that of the binary with
minor corrections. As shown below, two additional equations
for obtaining themolaritycross-derivatives (µ12 andµ21, which
are unequal11) are (a) equality of themolalitycross-derivatives12

wheremi is the molality of solutei, and (b) the ORR equation

relating the four molarity derivatives and the ternary diffusion
coefficients in a solvent-fixed reference frame (Dij)0.13,14 This
approach yields some extremely useful results, including an
estimate of the lysozyme charge and a functional approximation
to the change of the chemical potential of lysozyme chloride
with NaCl concentration. The latter provides the driving force
for nucleation and crystal growth of lysozyme chloride as a
function of the degree of supersaturation. This, together with
the diffusion coefficients, will permit the modeling of protein
crystallization processes.

For isothermal diffusion, experiments have thoroughly veri-
fied the ORR in dilute15 and nondilute11,13,14,16-18 systems. The
ORR have also been experimentally verified for linear processes
other than isothermal diffusion.19-22 For isothermal diffusion,
activity coefficient derivatives and measured ternary diffusion
coefficients are required to verify the ORR. Conversely, we take
the ORR to be valid, and use the measured diffusion coefficients
to extract the derivatives of the chemical potentials with respect
to the concentrations. The significance of this approach is that
it allows certain aspects of equilibrium behavior to be predicted
using measured transport data and binary thermodynamic data,
without resort to approximate theoretical techniques.11,13,14,23,24

To the best of our knowledge, the only previous use of the
ORR to compute a thermodynamic quantity is the one-
dimensional nonequilibrium molecular dynamics calculation of
Hafskjold and Ikeshoji25 for a thermodynamically ideal binary
system in which the mass ratio was 10, and the two species
had identical molecular diameters and Lennard-Jones intermo-
lecular potential depths. The computed thermal diffusion coef-
ficient and the ORR were then used to evaluate the derivative
of the chemical potential of one species with respect to its own
mass fraction. Also, to the best of our knowledge, the only
previous use of the ORR to extract additional information from
experimental data is the work of Hanot et al.,26 in which the
ORR, activity coefficient data, and a measurement of the (Soret)
separation ratio were used to compute the off-diagonal diffusion
coefficientsD12 andD21 for the ternary system H2O + ethanol
+ 2-propanol.

This work differs fundamentally from earlier work in which
thermodynamic properties and off-diagonal diffusion coefficients
have been related by approximations, rather than the exact ORR.
Havenga and Leaist27 performed ternary diffusion measurements
in 50:50 (w/w) water+ dioxane (1)+ electrolyte (2) solutions
for twelve inorganic salts and one organic salt, and used vapor
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pressure and activity data to assess the approximation∂µ1/∂C2

≈ (D12/D11) ∂µ1/∂C1. That effort produced only qualitative
agreement for each of the two values of∂µ1/∂C1 obtained by
differentiation of possibly inaccurate thermodynamic data.

The present work is also significant in that it provides direct
access to chemical potential variations in ternary protein systems
ranging from undersaturated to significantly supersaturated.
Most equilibrium techniques are limited to salt-protein satura-
tion conditions. On the isothermal protein-salt saturation curve,
measurements are complicated by long equilibration times and
subjective judgments of what constitutes equilibrium.

Most classical equilibrium techniques (isopiestic, vapor
pressure, freezing-point depression) are insufficiently accurate
to provide useful results, especially when the solute of interest
is dilute. Electromotive force measurements require reversible
solute-specific electrodes, which for proteins are typically
unavailable and which could induce crystallization in super-
saturated solution. Membrane osmometry is capable of dealing
with dilute protein solutions, but lacks accuracy, and requires
additional assumptions or generally unavailable data for com-
plete determination of activity coefficients. Equilibrium dialysis
and its variants also lack accuracy. Moreover, with either of
the two latter techniques, the membrane poses precipitation
problems for supersaturated solutions. Sedimentation equilibrium
by ultracentrifugation requires long-duration experiments and
is unsuitable for supersaturated solutions. Static light scattering,
which can in principle be used for undersaturated and super-
saturated systems obtains, at best, only the second virial
coefficient, and has the disadvantage that additional assumptions
or a generally unavailable thermodynamic derivative28,29

(∂ ln γ1/∂m2 in our notation) is required to obtain the true
concentration variation of the chemical potential.

In contrast, our technique requires only that the protein
component be dilute with respect to the salt on a molar basis,
and that binary thermodynamic data for the aqueous salt solution
be available or measurable. Furthermore, our technique can be
used to study supersaturated solutions as long as the experiment
ends before the onset of precipitation.

Experimental Section

The materials, solution preparation procedures, apparatus, and density
measurement procedures were described earlier.5 Seikagaku six times
recrystallized hen egg-white lysozyme chloride from one lot (E96301)
was used to prepare solutions for all binary experiments reported here.
Solutions used in binary experiment LC8 were prepared with lysozyme
chloride from the lot E96301 bottle which, as described earlier,5 appears
to be slightly drier than lysozyme chloride from other bottles of the
same lot. For the ternary experiments, the lot numbers used in each
experiment were the same as for the corresponding NaCl concentrations
of our earlier paper. The molecular masses of neutral lysozyme, NaCl,
and H2O were taken to be 14 307, 58.443, and 18.015 g mol-1,5

respectively.
As before, all mutual diffusion coefficients were measured with the

Gosting optical interferometric diffusiometer operating in its automated
Rayleigh mode.5,30 Separations of Creeth pairs were used to analyze
fringe patterns as described elsewhere.31,32All runs had approximately
50 fringes. The procedures for measuring binary and ternary diffusion
coefficients were described earlier.5 For each pair of mean concentra-

tions in the ternary case, two measurements were performed withR1

near 0 and two withR1 near 1, except atC2 ) 1.30 M (7.2 wt %)
where we usedR1 ) 0.8 instead of 1.0 to avoid precipitation. Here,Ri

≡ Ri∆Ci/(R1∆C1 + R2∆C2) is the refractive index fraction due to the
ith solute.5

Data analysis of the free-diffusion experiments32 is based on the
assumption that the concentration differences of the solutes across the
initial boundary are small enough that the diffusion coefficients are
constant and that Fick’s second law

can be applied, wheren is the number of solutes.
Since our concentration differences across the initial free-diffusion

boundary were small, the volume changes on mixing were also
negligible. Thus, all the measured diffusion coefficients are given
relative to the volume-fixed frame of reference defined by

whereJi andVh i are the molar flux and partial molar volume of theith
component, respectively, and the subscript “0” denotes the solvent.

For pH 6.0, we again observed that lysozyme chloride precipitated
from the supersaturated 1.30 M NaCl solutions, typically after 2 days.

Results

We report results for two series of binary experiments and
one ternary series. In the first binary series, we measure the
concentration dependence of the binaryDv for aqueous lysozyme
chloride at pH 6.0 and compare it to the results at pH 4.5
reported earlier.5 In the second binary series, we present the
pH dependence of the binaryDv at 0.89 mM. Theternary
diffusion coefficient measurements are used with eq 1 and the
ORR to extract the derivatives of chemical potential with respect
to composition at pH 4.5 and 6.0. They are also an important
part of our program to develop a complete understanding of
diffusive transport in the aqueous lysozyme chloride-NaCl
system over the range of conditions relevant to crystal growth.

Binary Dv as a Function of Aqueous Lysozyme Chloride
at pH 6.0. In this set of experiments, the mean lysozyme
chloride concentrationCh 1 ranged from 0.25 to 1.95 mM (3.6-
27.9 mg/mL). Binary diffusion coefficients are shown in Figure
1, and are tabulated with the following supporting data in Table
1: Ch 1, the mean lysozyme chloride concentration;∆C1, the
lysozyme chloride concentration difference across the initial
boundary; pH values for the bottom and top solutions;dbot and
dtop, the densities of the bottom and top solutions;∆t, a time
offset for the inevitable deviation from exact step-function
behavior of the solute distribution at the start of the clock;J,
the total number of fringes;Vh0 andVh1, the partial molar volumes
of H2O and lysozyme chloride at the mean concentration for
each experiment, determined from the densities and concentra-
tions of the reported solution pair;5 R1 ) J/∆C1, the refractive
index increment with respect toJ33,34at the mean concentration;
andDv, the mutual diffusion coefficient of lysozyme chloride
in the volume-fixed reference frame. Because the HCl concen-
trations are much lower at pH 6.0 than at pH 4.5, there was no
need to correctDv for ternary behavior associated with the
increased relative importance of HCl as the second solute at
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low lysozyme chloride concentrations.5 The binaryDv values
reported are internally consistent within the series to better than
0.1%. The accuracy is significantly better than 1%, but
ultimately depends on lysozyme purity.

Binary Dv at 0.89 mM Lysozyme Chloride as a Function
of pH. Binary diffusion coefficients for a series of experiments
performed at a mean lysozyme chloride concentration of 0.89
mM in the pH range 4.0-6.0 are shown in Figure 2, and
tabulated with supporting data in Table 2.

The diagnosticΩ values5,35are small, as previously observed
for solutions prepared from the same lysozyme chloride lots.
This reconfirms that the diffusion is essentially binary, that the
concentration dependence of the diffusion coefficient is unim-
portant, and that the lysozyme was of good purity.5

Ternary (Dij)v at pH 6.0 and a Lysozyme Chloride
Concentration of 0.60 mM. Four ternary experiments were
performed at each of five different mean compositions. Each
experiment in a set of four had the same mean NaCl and 0.6
mM lysozyme chloride concentrations, but different concentra-
tion differences of the solutes across the diffusion boundary.
The mean lysozyme chloride concentration and the five mean

NaCl concentrations, 0.25, 0.50, 0.65, 0.90, and 1.30 M (1.4,
2.8, 3.7, 5.1, and 7.2 wt %), were identical to those previously
investigated at pH 4.5.5

Data from each experiment are presented in Tables 3-7.
Besides the symbols introduced in Table 1, the data shown are
the following: Ch2, the mean NaCl concentration;∆C2, the NaCl
concentration difference across the free-diffusion starting bound-
ary;Jmeasd, the total number of fringes observed;Jcalcd, obtained
from the∆Ci and “refractive index increments with respect to
J” Ri defined below; andDA, the reduced-height-area ratio,36

obtained as described in ref 5.

(34) The conventional refractive index increment, with respect to the
fringe numberJ, is Ri. The more fundamental quantity,Ri

/ ) (a/λ)Ri, can
be computed from the tabulated quantities, whereλ is the optical wavelength
and a is the internal cell dimension along the optical axis, which in our
case are 543.5 nm and 2.5074 cm, respectively. Since extraction of diffusion
coefficients depends only on the ratioR1/R2 ) R1

//R2
/, either increment can

be used. The refractive index increment with respect toJ, which might
also be called the “fringe number increment”, has the advantage that the
cell sizea is not required.

(35) Creeth, J. M.; Gosting, L. J.J. Phys. Chem. 1958, 62, 58-65.
(36) Dunlop, P. J.; Gosting, L. J.J. Am. Chem. Soc. 1955, 77, 5238-

5249.

Figure 1. Diffusion coefficients of lysozyme chloride in H2O at 25
°C versus lysozyme chloride concentration:b, pH 4.5; 9, pH 6.0.
Least-squares curves are described in the text.

Table 1. Binary Experimental and Derived Data at 25°C, pH 6.0
(Series LC6-9)

expt LC6 LC7 LC8 LC9

Ch 1 (mM) 0.2497 0.6000 0.8900 1.9538
∆C1 (mM) 0.2863 0.3999 0.4118 0.6560
pH bottom 6.00 6.01 6.00 6.02
pH top 6.03 5.95 6.00 5.99
dbot (g cm-3) 0.998696 1.000267 1.001571 1.006411
dtop (g cm-3) 0.997488 0.998693 0.999868 1.003732
∆t (s) 15 20 38 9
Jmeasd 37.096 51.042 52.482 83.458
Vh1 (103 cm3 mol-1) 10.12 10.40 10.20 10.25

Vh0 (cm3 mol-1) 18.069 18.067 18.068 18.068

R1 (105 dm3 mol-1) 1.296 1.276 1.274 1.272
Dv (measd) (10-9 m2 s-1) 0.5670 0.5280 0.5054 0.4518

Figure 2. Diffusion coefficients of 0.89 mM lysozyme chloride in
H2O at 25°C versus pH. The fitted curve is piecewise quadratic.

Table 2. Binary Experimental and Derived Data at 25°C, Ch 1 )
0.89 M (Series LC10-12)

expt LC10 LC2a LC11 LC8 LC12

Ch 1 (mM) 0.8914 0.8914 0.8914 0.8900 0.8913
∆C1 (mM) 0.3364 0.3364 0.3364 0.4118 0.3363
pH bottom 3.98 4.48 4.99 6.00 6.48
pH top 4.01 4.48 4.99 6.00 6.46
dbot (g cm-3) 1.001504 1.001494 1.001494 1.001571 1.001438
dtop (g cm-3) 1.000086 1.000081 1.000077 0.999868 1.000066
∆t (s) 10 9 8 38 18
Jmeasd 43.742 43.639 43.663 52.482 43.473
Vh1 (103 cm3 mol-1) 10.13 10.14 10.12 10.20 10.26

Vh0 (cm3 mol-1) 18.068 18.069 18.069 18.068 18.067

R1 (105 dm3 mol-1) 1.300 1.297 1.298 1.274 1.293
Dv (measd)

(10-9 m2 s-1)
0.5271 0.5276 0.5234 0.5054 0.4967

pH av 3.99 4.48 4.99 6.00 6.47

a Data from this experiment were reported in ref 5.

Table 3. Ternary Experimental Data at 25°C, [NaCl] ) 0.25 M
(Series LNC6)

expt LNC61 LNC62 LNC63 LNC64

Ch 1 (mM) 0.6000 0.6000 0.6000 0.6000
Ch 2 (M) 0.2500 0.2500 0.2500 0.2500
∆C1 (mM) 0.4000 0.0000 0.4000 0.0000
∆C2 (M) 0.0000 0.1108 0.0000 0.1108
pH bottom 5.99 6.02 6.00 6.02
pH top 6.00 6.01 6.00 5.97
dbot (g cm-3) 1.010612 1.012023 1.010619 1.012025
dtop (g cm-3) 1.008961 1.007535 1.008955 1.007539
∆t (s) 37 9 21 8
Jmeasd 51.775 50.823 51.767 50.821
Jcalcd 51.775 50.817 51.767 50.827
DA (measd) (10-9 m2 s-1) 0.1237 1.662 0.1236 1.651
DA (calcd) (10-9 m2 s-1) 0.1237 1.724 0.1237 1.724
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Table 8 shows data derived from these five sets of experi-
ments, includingChh i, the average concentration of solutei in all
eight solutions (four bottom solutions and four top solutions)
for each set-mean composition;dh andHi ≈ ∂d/∂Ci (see eq 3 in
ref 5), obtained as functions ofC1 andC2 by a linear regression
of the density data from all solution pairs shown in Tables 3-7,
as well as solutions used in a few unsuccessful diffusion
experiments; the partial molar volumesVh1 andVh2 of the solutes
(calculated using eq A-7 of ref 13) at the mean concentration
in each set of experiments;Vh0, the partial molar volume of
H2O,37 implicit in

andRi ) ∂J/∂Ci, the refractive index increments with respect
to J,33,34 obtained to good approximation by linear regression
of theJ values versus∆Ci for all four experiments of each set,
and used to determineJcalc. Also included are the ratioSA/IA,32,38

a diagnostic which if smaller than about 0.2 implies strong
sensitivity of the diffusion coefficients to errors in the computa-
tions by which they are extracted from the fringe data; the
eigenvalues of the diffusion coefficient matrix,λ1 and λ2

(λ1 < λ2), associated with lysozyme chloride and NaCl,
respectively; and (Dij)v, the measured diffusion coefficients in
the volume-fixed frame. The errors shown for (Dij)v are
approximately4 timesthe standard error of the coefficients as
determined from the propagation-of-error equations using the
full covariance matrix of the least-squares parameters.32,33,39

Equations to relate the volume-fixed frame to the solvent-
fixed frame10,13,14require theVh i of all components. Parts A and
B of Table 9 give the values of (Dij)0 in the solvent-fixed frame
(defined byJ0 ) 0)10,40 for pH 4.5 and 6.0, respectively, with
the pH 4.5 values calculated from the volume-fixed (Dij)v

reported earlier.5

Discussion of Diffusion Coefficients

Binary Dv of Aqueous Lysozyme Chloride.Figure 1 shows
plots of Dv versusxC1 for pH 4.5 data previously reported5

and for pH 6.0 data reported in Table 1. The plots are nearly
linear. The equationDv ) 0.6470(1- 8.38xC1 + 35.1C1) was
fitted to the pH 6.0 data, whereDv andC1 have units of 10-9

m2 s-1 and M, respectively.
Extrapolating to zero protein concentration, we find thatDv

lies about 2% below the infinite-dilution value at pH 4.5.5 Both
values exceed, by about 10%, the value extrapolated to zero
protein concentration by Cadman, Fleming, and Guy.41 Those
authors performed Gou¨y interferometric measurements at
25 °C over a range of lysozyme chloride concentrations, and
fitted a linear relation to the measured diffusion coefficients as
a function of the mass fraction of lysozyme chloride in solution.
The solutions were in the pH range 3.3-3.6, and no correction
was made for the presence of HCl.5

As in our earlier work,5 we can compute the charge of the
lysozyme cation. We take the limiting tracer diffusion coefficient
of the aqueous lysozyme cation to be 0.12× 10-9m2 s-1, on
the basis of the data shown in Figure 3 of ref 5. At pH 6.0, this
gives a value ofzP ) 6.45 for the charge of the lysozyme cation.

(37) Rard, J. A.; Albright, J. G.; Miller, D. G.; Zeidler, M. E.J. Chem.
Soc., Faraday Trans.1996, 92, 4187-4197.

(38) Fujita, H.; Gosting, L. J.J. Am. Chem. Soc.1956, 78, 1099-1106.
(39) Miller, D. G.; Sartorio, R.; Paduano, L.; Rard, J. A.; Albright, J. G.

J. Solution Chem.1996, 25, 1185-1211.
(40) Kirkwood, J. G.; Baldwin, R. L.; Dunlop, P. J.; Gosting, L. J.;

Kegeles, G.J. Chem. Phys. 1960, 33, 1505-1513.
(41) Cadman, A. D.; Fleming, R.; Guy, R. H.Biophys. J. 1981, 37, 569-

574.

Table 4. Ternary Experimental Data at 25°C, [NaCl] ) 0.50 M
(Series LNC8)

expt LNC81 LNC82 LNC83 LNC84

Ch 1 (mM) 0.6000 0.6000 0.6000 0.6000
Ch 2 (M) 0.5000 0.5000 0.5000 0.5000
∆C1 (mM) 0.4000 0.0000 0.4000 0.0000
∆C2 (M) 0.0000 0.1136 0.0000 0.1136
pH bottom 6.01 6.01 6.01 6.01
pH top 6.01 6.00 6.01 6.01
dbot (g cm-3) 1.020619 1.022051 1.020617 1.022050
dtop (g cm-3) 1.018979 1.017518 1.018975 1.017518
∆t (s) 30 8 16 7
Jmeasd 51.148 50.910 51.137 51.006
Jcalcd 51.129 50.964 51.157 50.951
DA (measd) (10-9 m2 s-1) 0.1186 1.594 0.1187 1.587
DA (calcd) (10-9 m2 s-1) 0.1186 1.632 0.1187 1.632

Table 5. Ternary Experimental Data at 25°C, [NaCl] ) 0.65 M
(Series LNC9)

expt LNC91 LNC93 LNC94 LNC96c

Ch 1 (mM) 0.6000 0.6000 0.6000 0.6000
Ch 2 (M) 0.6500 0.6500 0.6500 0.6500
∆C1 (mM) 0.4000 0.4000 0.0000 0.0000
∆C2 (M) 0.0000 0.0000 0.1108 0.1108
pH bottom 6.02 6.00 6.01 6.00
pH top 5.99 6.00 6.00 5.99
dbot (g cm-3) 1.026572 1.026573 1.027947 1.027944
dtop (g cm-3) 1.024929 1.024935 1.023559 1.023555
∆t (s) 24 8 18 5
Jmeasd 51.094 51.148 49.064 49.183
Jcalcd 51.128 51.114 49.129 49.118
DA (meas) (10-9 m2 s-1) 0.1166 0.1167 1.578 1.581
DA (calc) (10-9 m2 s-1) 0.1167 0.1167 1.617 1.618

Table 6. Ternary Experimental Data at 25°C, [NaCl] ) 0.90 M
(Series LNC7)

expt LNC71 LNC72b LNC73 LNC74b

Ch 1 (mM) 0.6000 0.6000 0.6000 0.6000
Ch 2 (M) 0.9000 0.9000 0.8999 0.8999
∆C1 (mM) 0.4000 0.0000 0.4000 0.0001
∆C2 (M) 0.0000 0.1108 0.0000 0.1109
pH bottom 6.00 6.02 6.02 6.01
pH top 6.01 6.02 6.00 6.00
dbot (g cm-3) 1.036444 1.037765 1.036432 1.037766
dtop (g cm-3) 1.034782 1.033443 1.034736 1.033355
∆t (s) 15 9 20 10
Jmeasd 51.707 48.408 51.522 48.367
Jcalcd 51.614 48.369 51.615 48.407
DA (meas) (10-9 m2 s-1) 0.1136 1.577 0.1133 1.575
DA (calc) (10-9 m2 s-1) 0.1135 1.615 0.1135 1.613

Table 7. Ternary Experimental Data at 25°C, [NaCl] ) 1.30 M
(Series LNC10)

expt LNC101e LNC102 LNC103 LNC104

Ch 1 (mM) 0.59995 0.59995 0.59995 0.59995
Ch 2 (M) 1.2999 1.2999 1.2999 1.2999
∆C1 (mM) 0.31995 0.0000 0.31995 0.0000
∆C2 (M) 0.02212 0.11083 0.02212 0.11084
pH bottom 6.01 6.00 6.00 6.01
pH top 6.01 6.01 5.99 6.00
dbot (g cm-3) 1.052162 1.053218 1.052162 1.053241
dtop (g cm-3) 1.049998 1.048926 1.050013 1.048948
∆t (s) 132 8 18 5
Jmeasd 50.077 47.146 50.180 47.222
Jcalcd 50.129 47.181 50.128 47.187
DA (measd) (10-9 m2 s-1) 0.1474 1.588 0.1473 1.584
DA (calcd) (10-9 m2 s-1) 0.1481 1.626 0.1481 1.626

∑
i)0

n

CiVh i ) 1 (5)
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With this charge, the binary-system Nernst-Hartley equation
gives the limitingDv. The chloride ion diffusion coefficient was
taken to be 2.03× 10-9m2 s-1.42

On the other hand, we can use a Harned-type analysis1 of
the concentration dependence of the diffusion coefficients, where
in our application the protein chargezP is adjusted to match the
diffusion data. This assumes that the slope ofDv versusxC1 is
due to the concentration dependence of the activity coefficient,
and that the concentration dependence of the diffusion coef-
ficient is given by the Debye-Hückel limiting law for dilute
solutions. The resulting charge of the protein cation iszP ) 4.3.
However, this value should be interpreted with care, since the
charge is high, and the lysozyme cation is not spherical with a
central charge, as assumed for the Debye-Hückel limiting law.

Comparison ofzP values computed for pH 4.5 (zP ) 6.7 and
3.9 from the limiting diffusion coefficient and the Debye-
Hückel limiting law, respectively)5 to those at pH 6.0 shows
the charge at pH 6.0 to be less, as expected. The slope ofDv

versusxC1 is only slightly greater at pH 6.0 than at pH 4.5,
implying a marginally greater effective charge. Again, inter-
pretation is complicated by the high charge and asphericity of
the lysozyme cation.

Figure 2 showsDv versus pH for 0.89 mM lysozyme chloride
solutions. Interpretation of these data, which exhibit an apparent
maximum at low pH, must consider several factors. These
include the actual charge, the consequent dragging of lysozyme
cations by more mobile chloride anions, and the concentration
dependence of the lysozyme chloride activity coefficient as a
function of pH. As the pH increases toward lysozyme’s

isoelectric value of 11,43 the protein charge decreases. Along
with a corresponding decrease in the number of associated
chloride anions and the cations of lysozyme they drag, this
contributes to the expected decrease inDv. At the lowest pH
values, emergence of HCl as a third component and of hydrogen
ions as charge carriers will reduce the flux of lysozyme cations
dragged by chloride anions. Since the available data do not
permit a definitive assignment of the pH contribution to the
variation in Dv, we have made no attempt to correct for the
pH-dependent contribution of HCl.

Ternary (Dij)v at pH 6.0 and Lysozyme Chloride Concen-
tration of 0.60 mM. The dependence of the ternary diffusion
coefficientsDij on NaCl concentration at pH 4.5 and 6.0 is
shown in Figure 3 for 0.25 Me C2 e 1.30 M.

The values ofD11 (Figure 3a), corresponding to diffusion of
lysozyme chloride due to its own gradient, decrease with
increasing NaCl concentration at both pH values. The increase
of aqueous NaCl viscosity with increasingC2 over the sameC2

range44 accounts for most, but not all, of the decrease inD11.
At a given NaCl concentration, theD11 values are smaller at
the higher pH. Because the high NaCl concentration greatly
reduces the dragging of lysozyme cations by chloride anions,
the residual effects of those chlorides associated with lysozyme
should be lower at the higher pH. Other effects might also be
important, including differences in the degree of hydration of
the protein as a function of pH.

The values ofD12 (Figure 3b) are very small and, when
expressed in terms of thermodynamic transport coefficients (D12

(42) Mills, R. J. Phys. Chem. 1957, 61, 1631-1634.

(43) Tanford, C.; Wagner, M. L.J. Am. Chem. Soc.1954, 76, 3331-
3336.

(44) Jones, G.; Christian, S. M.J. Am. Chem. Soc. 1937, 59, 484-486.

Table 8. Derived Ternary Diffusion Data at 25°C, pH ) 6.0

series LNC6 LNC8 LNC9 LNC7 LNC10

Chh 1 (mM) 0.6000 0.6000 0.6000 0.6000 0. 59995

Chh 2 (M) 0.2500 0.5000 0.6500 0.9000 1.2999
dh (g cm-3) 1.009783 1.019791 1.025753 1.035607 1.051086
H1 (103 g mol-1) 4.144 4.102 4.103 4.144 4.062

H2 (103 g mol-1) 0.0405 0.0399 0.0396 0.0392 0.0387

Vh1 (cm3 mol-1) 10192 10232 10229 10184 10262
Vh2 (cm3 mol-1) 18.014 18.602 18.879 19.324 19.746
Vh0 (cm3 mol-1) 18.066 18.062 18.059 18.053 18.046
R1 (102 dm3 mol-1) 1294 1278 1278 1290 1272
R2 (102 dm3 mol-1) 4.585 4.485 4.432 4.365 4.257
SA/IA 2.734 2.773 2.709 2.723 2.849
λ1 (10-9 m2 s-1) 0.1194 0.1057 0.1130 0.1103 0.0996
λ2 (10-9 m2 s-1) 1.461 1.462 1.456 1.457 1.475
(D11)v (10-9 m2 s-1) 0.1204( 0.0001 0.1140( 0.0001 0.1113( 0.0001 0.1069( 0.0001 0.1011( 0.0001
(D12)v (10-9 m2 s-1) 0.000155( 0.000002 0.000104( 0.000002 0.000094( 0.000001 0.000086( 0.000002 0.000082( 0.000002
(D21)v (10-9 m2 s-1) 9.0( 0.2 12.4( 0.2 14.7( 0.1 18.7( 0.3 26.0( 0.2
(D22)v (10-9 m2 s-1) 1.460( 0.001 1.455( 0.001 1.456( 0.001 1.461( 0.001 1.474( 0.001

Table 9

A. Solvent-Fixed Ternary Diffusion Coefficients for pH 4.5,C1 ) 0.6 mM

C2 ) 0.25 M C2 ) 0.50 M C2 ) 0.65 M C2 ) 0.90 M C2 ) 1.30 M

(D11)0 (10-9 m2 s-1) 0.1263 0.1191 0.1156 0.1111 0.1041
(D12)0 (10-9 m2 s-1) 0.000186 0.000124 0.000112 0.000104 0.000097
(D21)0 (10-9 m2 s-1) 10.3 14.5 17.0 21.2 28.9
(D22)0 (10-9 m2 s-1) 1.466 1.469 1.474 1.488 1.516

B. Solvent-Fixed Ternary Diffusion Coefficients for pH 6.0,C1 ) 0.6 mM

C2 ) 0.25 M C2 ) 0.50 M C2 ) 0.65 M C2 ) 0.90 M C2 ) 1.30 M

(D11)0 (10-9 m2 s-1) 0.1212 0.1149 0.1122 0.1078 0.1021
(D12)0 (10-9 m2 s-1) 0.000172 0.000121 0.000111 0.000104 0.000101
(D21)0 (10-9 m2 s-1) 9.4 13.1 15.6 20.0 28.1
(D22)0 (10-9 m2 s-1) 1.467 1.469 1.475 1.488 1.514

Thermodynamic Data from Diffusion Coefficients J. Am. Chem. Soc., Vol. 122, No. 25, 20005921



) L11µ12 + L12µ22), result from near-cancellation of two terms
with opposite signs and similar magnitudes. TheD12 values at
lower concentration for pH 6.0 are larger than those at pH 4.5,
but cross over aroundC2 ) 0.6 M. The data are believed to be
precise enough that this effect is probably real.

Values ofD21 (Figure 3c) are large and increase rapidly with
increasingC2 for both pH values, but at each NaCl concentration
are slightly lower at pH 6.0. The difference betweenD21 values
at pH 4.5 and 6.0 remains nearly constant asC2 varies, as
discussed below in terms of the decreased charge of the
lysozyme cation as the isoelectric pH is approached. The ratio
D21/D11 indicates that each mole of lysozyme chloride cotrans-
ports 257( 2 mol of NaCl in a uniform 1.30 M NaCl solution
at pH 6.0. This is identical, within experimental error, to the
value of 260( 2 at pH 4.5.5 The ratioD21/D11 increases sharply
and nearly linearly with NaCl concentration. The values at pH
6.0 exceed those at pH 4.5 by 1-8%. The dependence ofD21

on NaCl concentration can be interpreted in terms of excluded
volume or “salting-out” effects. The relative merits of those
interpretations, in light of precision ternary diffusion data to be
published for lysozyme chloride in aqueous solutions of sodium,
potassium, magnesium, calcium, and ammonium chlorides, will
be thoroughly explored elsewhere.

The values ofD22 (Figure 3d) are nearly the same for both
pH values. Since this is the coefficient for NaCl diffusion due
to its own gradient, no pH dependence is expected.

Examination of the Determinant.Figure 4 shows the square
root of the diffusion coefficient matrix,|D| ≡ (D11)v(D22)v -
(D12)v(D21)v, as a function ofC2 for both pH values. At each
NaCl concentration, the pH 6.0 values of|D| are consistently
lower than those for pH 4.5. For each pH,|D| decreases by
about 10% asC2 increases from 0.25 M into the supersaturated

Figure 3. Elements of the matrix of diffusion coefficients for the ternary system lysozyme chloride+ NaCl + H2O at pH 6.0 and 25°C: b, pH
4.5; 9, pH 6.0. (a, top left)D11, least-squares curves are cubic inC2

1/2; (b, top right)D12, least-squares curves are of the forma0C2
-1/2 + a1 + a2C2

1/2;
(c, bottom left)D21, least-squares curves are quadratic inC2; (d, bottom right)D22 and Dv for binary diffusion of NaCl in H2O (shown by[),
least-squares curves are cubic inC2

1/2.

Figure 4. Square root of the determinant of the diffusion coefficient
matrix for the ternary system lysozyme chloride+ NaCl + H2O at pH
6.0 and 25°C: b, pH 4.5;9, pH 6.0. Least-squares curves are cubic
in C2

1/2.
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region at 1.30 M. The plots suggest that if the determinant
vanishes for 0.60 mM lysozyme chloride, it does so well above
1.30 M. Consequently, the data indicate that if the spinodal curve
intersects theC1 ) 0.6 mM line in theC1 - C2 plane, it does
so at an NaCl concentration well in excess of 1.30 M.5

Partial Molar Volumes. The partial molar volumeVh1 of
lysozyme chloride is independent ofC2 within experimental
error, and apparently does not depend significantly on pH either,
although experimental error may hide a small effect.

In contrast, the partial molar volumeVh2 of NaCl increases
with increasingC2. This behavior is very similar to that in binary
NaCl + H2O. However, the values in the ternary system are
slightly higher, consistent with an excluded volume effect.
Again, there does not seem to be a significant pH dependence.

Other Measured or Calculated Quantities.The parameters
H1 and H2, defined in eq 3 of ref 5 and corresponding
approximately to the derivatives of solution density with respect
to C1 andC2, respectively, are independent ofC2 and pH within
experimental error.

The R1 andR2 values relatingJ to ∆C1 and∆C2 are nearly
the same for both pH values at a given mean concentration.
Within experimental error,R1 is apparently independent of
concentration, whereasR2 decreases slowly with increasingC2,
as it also does in binary aqueous NaCl.

The eigenvalueλ1 (associated with lysozyme chloride) at pH
4.5 is approximately 3% higher than at pH 6.0 at each
concentration, and decreases with increasing NaCl concentration
at both pH values. At pH 4.5 and 6.0, theλ2 values (associated
with NaCl) are approximately equal, as expected, and nearly
independent ofC2. At pH 6.0, the values ofλ2 agree even more
closely with measured values ofDv in aqueous NaCl46 than at
pH 4.5, being within 1% of and always lower thanDv.

Use of Irreversible Thermodynamics and Diffusion Data
To Calculate Chemical Potential Derivatives

Our lysozyme chloride-NaCl-H2O system has an interesting
and useful attribute characteristic of many biological systems:
the molar concentrations of a macromolecule and the supporting
electrolyte are small and large, respectively. In this special case,
it is possible to estimate the chemical potential derivativesµ11

andµ22, as will become clear below.
The molality cross-derivative relation, eq 1, comes from

classical thermodynamics. From eq 1, an expression can be
derived relating the four molarity partial derivativesµij.11 A
second equation, the ternary ORR of irreversible thermodynam-
ics, relates the four (Dij)0 values and the fourµij values.13,14

Therefore, we can get the two off-diagonal derivativesµij

(i * j) from these two relations, provided that suitably accurate
approximations are available for the self-derivatives of the
lysozyme chloride and sodium chloride chemical potentials,µ11

andµ22, respectively.
The ORR are of considerable theoretical interest, and for this

reason have been rigorously tested.11,13-22 However, particularly
for bulk diffusion, they have had little practical application.

Now, in an important application, we demonstrate use of the
ORR to extract from our data thermodynamic properties that
would otherwise be inaccessible. From binary thermodynamic
data for the more concentrated solute and diffusion coefficients
(transport data), it is possible to use the ORR to get the
thermodynamic derivativesµij even for supersaturated solutions.
We will illustrate this result for the system lysozyme chloride-
NaCl-H2O, since it fulfills the required conditions. In addition,

we can calculate the protein charge by least-squares fitting to
an appropriate functional form, the thermodynamic derivative,
µ12, over the range of NaCl concentrations at constant lysozyme
concentration.

We now review the thermodynamic equations which lead to
our results.

Fundamental Equations.Our analysis is in terms of quanti-
ties referred to a solvent-fixed reference frame, identified by a
subscript 0, with the “diffusion Onsager coefficients” denoted
by (Lij)0. As noted in the Results, the solvent-fixed (Dij)0 values
shown in Table 8 are obtained from experimental volume-fixed
(Dij)v by standard equations involving theVh i.10,13,14

It has been shown10,13,14that the (Lij)0 and (Dij)0 are related
(in matrix form) by

The inverse relation is

Since the ORR, (L12)0 ) (L21)0,13,14 apply to the solvent-fixed
frame, eq 7 yields eq 2.

From the cross-derivative expression eq 1 and the relations
betweenCi andmi, we can show that11

whereM0 is the molecular mass of H2O.
The general thermodynamic expressions forµij in terms of

volume concentrations and the corresponding mean ionic activity
coefficientsyi for volume concentrations have been derived.11

Let zP, zNa, andzCl be the absolute values of the charges on the
protein cation, sodium cation, and chloride ion common to the
salt and protein, respectively. Furthermore, Na+ and Cl- are
univalent, i.e.,zNa ) zCl ) 1. We have also assumed that lyso-
zyme chloride has stoichiometry LyClzP

. Consequently, the
cation stoichiometric coefficients47 r1c of LyClzP

and r2c of
NaCl are both unity. With these conditions, theµij for our
particular case can be written in matrix form as

(45) Vitagliano, V.; Sartorio, R.J. Phys. Chem.1970, 74, 2949-2956.
(46) Rard, J. A.; Miller, D. G.J. Solution Chem.1979, 8, 701-716. (47) Miller, D. G. J. Phys. Chem. 1967, 71, 616-632.

[(D11)0 (D12)0

(D21)0 (D22)0
] )

[(L11)0µ11 + (L12)0µ21 (L11)0µ12 + (L12)0µ22

(L21)0µ11 + (L22)0µ21 (L21)0µ12 + (L22)0µ22
] (6)

[(L11)0 (L12)0

(L21)0 (L22)0
] ) 1

µ11µ22 - µ12µ21
×

[µ22(D11)0 - µ21(D12)0 µ11(D12)0 - µ12(D11)0

µ22(D21)0 - µ21(D22)0 µ11(D22)0 - µ12(D21)0
] (7)

1
C0M0

∂µ1

∂m2
) µ12(1 - C2Vh2) - µ11C1Vh2 )

µ21(1 - C1Vh1) - µ22C2Vh1 ) 1
C0M0

∂µ2

∂m1
(8)

[µ11 µ12

µ21 µ22
]) RT×

[ 1
C1

+
zP

2

zPC1 + C2
+ (zP + 1)

∂ ln y1

∂C1

zP

zPC1 + C2
+ (zP + 1)

∂ ln y1

∂C2

zP

zPC1 + C2
+ 2

∂ ln y2

∂C1

1
C2

+ 1
zPC1 + C2

+ 2
∂ ln y2

∂C2

]
(9)
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Note that the quantityzPC1 + C2 is equivalent to the total
normality N of our ternary solution.

Evaluation of the µij. With the above equations, we now
show how to compute the partial derivatives of the chemical
potentials,µij, for the case in which the molarity of at least one
component is very low, a common situation in multicomponent
protein solutions.

(i) Calculation of µ11. From eq 9, we can rewriteµ11 as

from which we can see that the first term is dominant for small
C1. Values ofµ11 calculated by retaining the first two terms are
given in Table 10 for pH 4.5 and 6.0 for all NaCl concentrations.

Consideration of light-scattering measurements of the second
virial coefficient of lysozyme chloride by Guo et al.48 and
formulas that relateµ11 to the second virial coefficient28 suggests
that the absolute error associated with dropping the third term
in eq 10 does not exceed 10%. For the application below, the
accuracy required ofµ11 need not be high, so that the values
calculated from eq 10 are satisfactory.

(ii) Calculation of µ22. Since C2 . C1, we observe, not
surprisingly, that the measuredD22 values are close to the values
of the binary diffusion coefficients at corresponding NaCl
concentrations. Similarly, it is expected that the chemical
potentialderiVatiVe µ22 for the ternary case will be close to its
corresponding binary value. Consequently, the expression for
µ22 can be written to a good approximation as

The value ofµ22 is evaluated using the derivative of the
activity coefficient49 for the binary salt solution at the salt
concentration of the ternary system. The activity coefficient
correction in eq 11 is not very sensitive to the binary concentra-
tion chosen for its evaluation. Thus, eq 11 should yield an
accurate value ofµ22.

(iii) Calculation of µ12 and µ21. Solving eqs 2 and 8 for the
cross-derivatives of the chemical potential in terms ofµ11, µ22,
and the four (Dij)0, we obtain

We then calculateµ12 andµ21 from the estimated values ofµ11

and µ22, and the four measured (Dij)0 values. Numerical
examination of the various terms shows thatµ12 andµ21 depend
mostly onµ22 and (D21)0. Values of all fourµij values are given
in Table 10 asµij/RT.

If we linearly interpolate our pH 4.5 values ofµij/RTat 0.90
and 1.30 M NaCl to 1.0 M NaCl, we getµ11 ) 248 kcal mol-1

M-1 andµ12 ) 6.74 kcal mol-1 M-1. Substituting these values
into eq 8, we get∂µ1/∂m2 ) 6.31 kcal mol-1 (mol kg-1)-1, in
excellent agreement with the molality derivative∂µ1/∂m2 )
(6.8 ( 1.7) kcal mol-1 (mol kg-1)-1 obtained densimetrically
in equilibrium dialysis-like experiments by Arakawa and
Timasheff50 for lysozyme in buffered 1.0 M NaCl at pH 4.5
and 20°C.

Our approach to obtaining theµij in the ternary case can also
be used for four or more components, providing that the molar
concentrations of all but one solute are (a) sufficiently low that
terms inversely proportional to concentration dominate the
generalization of eq 9 and (b) low compared to that of the
remaining solute (e.g., the supporting electrolyte). For example,
consider a four-component system. In that case, the six off-
diagonal µij values are determined by three molality cross-
derivatives such as eq 1, three Onsager relations similar to but
more complex than eq 2, and the three main-termµii values
estimated as above.

The analysis above has been applied to the case in which
one component (the protein) has a molar concentration much
lower than that of the other. However, the approach can be
extended to ternary systems with solutes of comparable size by
extrapolating data to the limit in which one solute is infinitely
dilute. Taking the limitC1 f 0 in eqs 12a and 12b yields eqs
A-1 and A-2 of the Appendix. Here,D11, D21, and the limiting
slope

are accessible by extrapolation, andD22 andµ22 are the binary(48) Guo, H.; Kao, S.; McDonald, H.; Asanov, A.; Combs, L. L.; Wilson,
W. W. J. Cryst. Growth1999, 196, 424-433.

(49) Miller, D. G. J. Phys. Chem. 1966, 70, 2639-2659. (50) Arakawa, T.; Timasheff, S. N.Biochemistry1984, 23, 5912-5923.

Table 10

A. Chemical Potentials and Derivatives for pH 4.5,C1 ) 0.6 mM

C2 ) 0.25 M C2 ) 0.50 M C2 ) 0.65 M C2 ) 0.90 M C2 ) 1.30 M

µ11/RT(M-1) 1984 1827 1790 1756 1729
µ22/RT(M-1) 7.267 3.732 2.924 2.183 1.600
µ12/RT(M-1) 35.0 19.2 15.5 11.8 10.1
µ21/RT(M-1) 53.7 38.4 34.7 31.9 31.1
(µ1 - µ1

/)/RT -12.21 -5.89 -3.36 0.00 4.36

B. Chemical Potentials and Derivatives for pH 6.0,C1 ) 0.6 mM

C2 ) 0.25 M C2 ) 0.50 M C2 ) 0.65 M C2 ) 0.90 M C2 ) 1.30 M

µ11/RT(M-1) 1918 1793 1764 1737 1716
µ22/RT(M-1) 7.275 3.733 2.923 2.181 1.596
µ12/RT(M-1) 29.9 15.2 12.3 10.0 8.9
µ21/RT(M-1) 48.6 34.3 31.8 30.0 30.1
(µ1 - µ1

/)/RT -10.00 -4.79 -2.74 0.00 3.69

µ11 ) RT
C1

[1 +
zP

2C1

zPC1 + C2
+ (zP + 1)C1

∂ ln y1

∂C1
] (10)

µ22 ) RT
C2

[1 +
C2

zPC1 + C2
+ 2C2(∂ ln y2

∂C2
)

binary
] (11)

µ12 ) {µ11[C1Vh2(D22)0 - (1 - C1Vh1)(D12)0] -
µ22[C2Vh1(D22)0 - (1 - C1Vh1)(D21)0]}/

[(1 - C2Vh2)(D22)0 - (1 - C1Vh1)(D11)0] (12a)

µ21 ) {µ11[C1Vh2(D11)0 - (1 - C2Vh2)(D12)0] -
µ22[C2Vh1(D11)0 - (1 - C2Vh2)(D21)0]}/

[(1 - C2Vh2)(D22)0 - (1 - C1Vh1)(D11)0] (12b)

â ) lim
C1f0

(D12/C1) (13)
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diffusion coefficient and chemical potential derivative of
component 2, respectively. Equations A-1 and A-2 have noµ11

approximation and apply to other cases, such as NaCl+ MgCl2
+ H2O.

We note that predictions ofµ21 by the approximate “salting-
out” theory of Havenga and Leaist,27 based on our measured
diffusion coefficients and the derivative of the lysozyme chloride
chemical potential with respect to the lysozyme chloride
concentration, are in excellent agreement with our reported
values, based on the Onsager reciprocal relations. However,
unlike the ORR-based approach, which is exact if the diffusion
coefficients and thermodynamic data are precisely known, the
salting-out theory is an approximate dilute-solution theory whose
degree of validity will vary from system to system.

Use of µ12 and µ21 To Calculate the Lysozyme Cation
Charge zP. Examination of the expressions forµ12 andµ21 in
eq 9 suggests that we can obtain the protein charge in our system
as follows. We first multiplyµ12/RT andµ21/RT by zPC1 + C2

and obtain

We assume a linear relation∂ ln yi/∂Cj ) aij + bij(zPC1 +
C2) between each activity coefficient derivative in eq 14a,b and
the linear combination of concentrations (the normalityN) in
the same equation. We then use values ofµ12 andµ21 calculated
from ourC1 ) 0.60 mM experiments at several values ofC2 to
perform nonlinear least-squares fits to determinea12, b12, and
zP in eq 14a, anda21, b21, and zP in eq 14b. The results are
shown in Figure 5. (Insufficient data are available for fits using
higher-order polynomial approximations to∂ ln yi/∂Cj.) Self-
consistency requires the two values ofzP to be in good
agreement. At pH 4.5, the values ofzP obtained from eqs 14a
and 14b are 8.83 (witha12 ) 0.0185 M-1 andb12 ) 0.243 M-2)
and 8.99 (a21 ) 8.82 M-1, b21 ) 2.51 M-2), respectively, while
at pH 6.0 we find 7.98 (a12 ) -0.279 M-1, b12 ) 0.449 M-2)
and 8.26 (a21 ) 7.21 M-1, b21 ) 3.57 M-2), respectively. This
agreement suggests that our measured diffusion coefficients and
estimatedµij values are consistent and reasonably accurate. The
lower charge at pH 6.0 is expected, sincezP decreases to zero
as the isoelectric pH of 11 is approached.

It is important to note that over our range of NaCl concentra-
tions, we have assumed that (a)zP is constant and (b) the linear
relationships between the concentrations and the two thermo-
dynamic derivatives in eqs 14a and 14b are valid. These
assumptions are justified by the internal consistency of our
results. However, values ofµij calculated on the above basis
would be expected to be incorrect at very low NaCl concentra-
tions, due to a dependence on the square root of the ionic
strength.

At both pH values, values ofzP calculated from the binary
experiments differ considerably from those calculated using
ternary data. This is not surprising, since they were obtained
using very different approaches. The averaged ternaryzP values
(8.9 and 8.1 at pH 4.5 and 6.0, respectively) were obtained at
higher concentrations from thermodynamic data, which were
in turn obtained in part from transport data. One set of binary
zP values (6.7 and 6.45 at pH 4.5 and 6.0) calculated above was

obtained from extrapolated limiting diffusion coefficients for
aqueous lysozyme chloride. These limiting values were in turn
extrapolated from diffusion coefficients measured at low, but
nonzero concentrations. These extrapolated diffusion coefficients
were used to getzP from the binary Nernst-Hartley equation,
which is an infinite-dilution transport equation. The second set
of binaryzP values (3.9 and 4.3 at pH 4.5 and 6.0) was obtained
by a Harned-type analysis1 in which the charge in the Debye-
Hückel limiting law was adjusted to match the concentration
dependence of the diffusion data. The unrealistically low values
indicate the limitations of Debye-Hückel analysis in our
systems.

Use ofµ12 To Calculate the Chemical Potential Variation
of Lysozyme Chloride

We divide eq 14a byzPC1 + C2, use the linear approximation
for ∂ ln yi /∂Cj in terms of the coefficientsaij andbij, and integrate
to get

where C2,s is the NaCl concentration at which 0.60 mM
lysozyme chloride in aqueous NaCl is in equilibrium with

Y12 ) (zPC1 + C2)
µ12

RT
)

zP + (zPC1 + C2)(zP + 1)
∂ ln y1

∂C2
(14a)

Y21 ) (zPC1 + C2)
µ21

RT
) zP + 2(zPC1 + C2)

∂ ln y2

∂C1
(14b)

Figure 5. (zPC1 + C2)µij/RTvs zPC1 + C2 for i * j at 25°C: b, µ12;
[, µ21. (a, top) pH 4.5; (b, bottom) pH 6.0. Curves fitted to data using
the nonlinear least-squares procedure described in the text.

µ1 - µ1
/ ) ∫µ12 dC2

) RT{zP ln
zPC1 + C2

zPC1 + C2,s
+ (zP + 1)(C2 - C2,s) ×

[a12 + b12zPC1 + b12

C2 + C2,s

2 ]} (15)
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crystalline tetragonal lysozyme chloride at 25°C. Using the
values ofzP, a12, andb12 determined from eq 14a, we can then
compute the chemical potential of lysozyme chloride,µ1, relative
to the reference state (denoted by an asterisk and taken as 0.90
M at pH 4.5 and 6.0)51 at which the lysozyme chloride activity
is unity. Plots of (µ1 - µ1

/)/RTversusC2 are given in Figure 6
for pH 4.5 and 6.0.

The highest NaCl concentration that we could prepare in a
bottom solution without precipitation occurring before or during
an experiment was about 1.35 M. AtC2 ) 1.30 M, the driving
force for crystallization calculated from eq 15 is 10.81 kJ mol-1

at pH 4.5 and 9.17 kJ mol-1 at pH 6.0. These values depend on
the uncertain value of the NaCl concentration beyond which
0.60 mM lysozyme chloride becomes insoluble (i.e.,C2,s )
0.90 M). The dependence of the uncertainty inµ1 on the
uncertainty inC2,s is found from

and the calculated values ofzP, a12, andb12. At pH 6.0, each
0.1 M uncertainty inC2,s about the nominal 0.90 M value
corresponds to an uncertainty of 2.46 kJ mol-1 in the driving
force. For example, ifC2,s ) (0.90( 0.05) M, thenµ1 - µ1

/ )
(9.17( 1.23) kJ mol-1. We observe that the derivative (eq 16)
depends on the linear combinationzPC1 + C2,s, but is indepen-
dent ofC2.

We note that any good fit of the NaCl dependence of the
values ofµ12 derived from eq 14a could have been used to
evaluate the integral in eq 15. When better ternary solubility
data become available, a more accurate value ofC2,s at 25°C
and C1 ) 0.60 mM can be used in eq 15 to recompute the
driving force for crystallization.

Thermodynamic Transport Coefficients (Diffusion
Onsager Coefficients)

The thermodynamic transport coefficients, (Lij)0, were cal-
culated from the (Dij)0 and µij data in Tables 9 and 10,

(51) This value is based on data at 25°C for aqueous solutions of
lysozyme and NaCl buffered with 0.05 M sodium acetate at pH 4.5, and
with 0.05 M sodium phosphate at pH 6.0 (Howard, S. B.; Twigg, P. J.;
Baird, J. K.; Meehan, E. J.J. Cryst. Growth1988, 90, 94-104). Shih et al.
report the only lysozyme solubility measurements in unbuffered solution
near 25°C of which we are aware (Shih, Y.-C.; Prausnitz, J. M.; Blanch,
H. W. Biotechnol. Bioeng. 1992, 40, 1155-1164). However, a later paper
(Curtis, R. A.; [Montaser, A.;] Prausnitz, J. M.; Blanch, H. W.Biotechnol.
Bioeng. 1998, 57, 11-21; erratum1998, 58, 451) reports that, for lysozyme
obtained from the supplier used earlier, “molecular weights obtained from
the experiments in solutions of sodium chloride are approximately 17,500
daltons, larger than the monomer molecular weight of 14,600 (sic) daltons
indicating, that the Sigma lysozyme contains high molecular weight
impurities”. Curtis et al. then state that lysozyme from this supplier “contains
2% ovalbumin and conalbumin, which interact with the lysozyme to form
large aggregates in aqueous salt solutions”. All other solubility data known
to us at or near 25°C pertain to systems with buffer concentrations in excess
of those used by Howard et al.

Figure 6. Integrated values of (µ1 - µ1
/)/RT versusC2: s, pH 4.5;

- - ‚‚ - -, pH 6.0.

Figure 7. Normalized diffusion Onsager coefficients versusC2 at 25
°C: b, pH 4.5; 9, pH 6.0. (a, top)RTL11/(zPC1); (b, middle)RTL12/
(zPC1); (c, bottom)RTL22/(zNaC2). Lines are least-squares fits.

∂(µ1 - µ1
/)

∂C2,s
) -RT{ zP

zPC1 + C2,s
+

(zP + 1)[(a12 + b12zPC1) + b12C2,s]} (16)
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respectively, and eq 7. In general, the (Lij)0 coefficients require
normalization divisors11,47 so as not to vanish asC1 or C2

approaches zero. ForL11, L12 ()L21), and L22, these divisors
arex1N, x1x2N, andx2N, respectively, whereN ) zPC1 + C2 is
the equivalent concentration (normality), andx1 ) zPC1/
(zPC1 + C2) andx2 ) C2/(zPC1 + C2) are the equivalent frac-
tions.

In our experiments,Ch 1 is constant and much less thanCh 2.
Values ofN andx1 are therefore approximately proportional to
C2 andzPC1/C2, respectively, butx2 will be independent ofC2

and approximately unity. The normalization factors are thenx1N
) zPC1 for (L11)0, x1x2N ) zPC1 for (L12)0 and (L21)0, andx2N
) zNaC2 for (L22)0. Thus, in this study, the normalization divisors
for both (L11)0 and (L12)0 will be constant, and that for (L22)0

will be C2. The value ofzP used is the average of those
determined from eqs 14a and 14b.

The normalized (Lij)0 coefficients are shown in Table 11 for
pH 4.5 and 6.0, and provide a basis for comparison of results
at different lysozyme chloride concentrations in future experi-
ments. Plots of the normalized quantity (L22)0/(x2N) as a function
of C2 are shown in Figure 7 for pH 4.5 and 6.0. The
thermodynamic transport coefficients (L22)0 and their normalized
values appear to be insensitive to pH. The normalized values
depend nearly linearly on NaCl concentration. This is consistent
with the common observation that descriptions of diffusive
transport in terms of thermodynamic transport coefficients and
chemical potential gradients better separate frictional and driving
force effects than do descriptions in terms of diffusion coef-
ficients and concentration gradients. For example, the concentra-
tion dependence of the normalized (L22)0 is simpler than the
concentration dependence ofD22. In the present case, one should
not expect extrapolation toC2 ) 0 to be valid, because the
chloride ions of lysozyme chloride become important at very
low NaCl concentrations.

The values of (L12)0 would be expected to decrease as the
charge of the lysozyme cation decreases. The appearance ofzP

in the normalization factor of (L12)0 incompletely accounts for
this effect.

Errors inµ11 have only small effects onµ12 andµ21, to which
the terms involvingµ11 make only small contributions. In
contrast, eq 7 shows that the relative errors in (L11)0 and (L12)0

) (L21)0 are nearly proportional to the error inµ11. However,
the ratio (L11)0/(L12)0 does not depend onµ11 and thus is an
accurate quantity.

Finally, the availability of the (Lij)0 coefficients allows us to
interpret the pH dependence ofD21 in terms of thermodynamic
quantities. From eq 6, we see that whenµ11 is small, as is the
case in our work, (D21)0 is dominated by (L22)0µ21. Since the
first factor is close to its binary value, the main contribution to
the pH dependence will come fromµ21. At each NaCl
concentration, reference to Tables 8 and 10 above, and to Table

7 of ref 5, shows that the ratio ofµ21 at pH 6.0 to its value at
pH 4.5 (0.905, 0.893, 0.916, 0.940, and 0.968 atC2 ) 0.25,
0.50, 0.65, 0.90, and 1.30 M, respectively) is within 0.7% of
the ratio of the diffusion coefficients (D21)0 at the two pH values
and corresponding NaCl concentrations (0.909, 0.899, 0.919,
0.944, and 0.970).

Conclusions

We have applied the Onsager reciprocal relations to precision
ternary diffusion data in a fundamentally new way, to obtain
two cross-derivatives of the chemical potential,µij ≡ ∂µi /∂Cj

(i * j), for aqueous protein solutions. Besides the ternary
diffusion coefficients, the calculation also requires estimates of
the self-derivativesµii. Using computed values ofµ12 andµ21,
we have computed approximate values for the charge of the
lysozyme cation at 0.60 mM and 25°C for pH 4.5 and 6.0 over
a range of NaCl concentrations (0.25-1.30 M). Integration of
µ12 with respect toC2 at constantC1 gives the change in
lysozyme chloride chemical potential with NaCl concentration
at fixed protein concentration well into the supersaturated region,
with an apparent accuracy of 2-4%.

Many systems of biological interest satisfy the restriction that
the molar concentration of protein or other monodisperse
biological macromolecules is small enough for the derivative
of its chemical potential with respect to its own concentration
to be dominated by an inverse dependence on concentration,
and also small compared to the concentration of supporting
electrolyte.

The approach demonstrated here thus provides a means to
obtain, relative to any reference state, the chemical potentials
of proteins (with low molar concentrations) in concentrated
electrolyte solutions, quantities which are typically not easily
accessible. All other methods known to us either suffer from
lack of accuracy when the solute of interest is dilute, give less
information than the concentration variation of the chemical
potential, or are inapplicable to supersaturated solutions. Our
approach applies to undersaturated solutions, and to those
supersaturated solutions for which the onset of precipitation
occurs after the experiment ends.

The ability to determine chemical potentials (relative to a
crystalline state or other reference) is of particular interest in
protein crystal growth, where this technique provides, for the
first time, direct access to thermodynamic variables under
metastable conditions. Its detailed application to lysozyme and
other biological macromolecules should provide consider-
able insight into nucleation, crystal growth, and related phe-
nomena.
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Appendix

In the limit C1 f 0 (i.e., a binary solution of component 1 in
the solvent), we find from eqs 10, 12a, and 12b that

whereâ is defined in eq 13 and the partial molar volumes are
the limiting values asC1 f 0. Arbitrary numbering of
components 1 and 2 in eqs 13, A-1, and A-2 allows evaluation
of these activity coefficient derivatives in the limit where the
concentration of either solute (but not both) vanishes.

JA993871L

µ12 ) {RT[Vh2(D22)0 - â] - µ22[C2Vh1(D22)0 - (D21)0]}/
[(1 - Vh2C2)(D22)0 - (D11)0] (A-1)

µ21 ) {RT[Vh2(D11)0 - (1 - Vh2C2)â] -
µ22[C2Vh1(D11)0 - (1 - Vh2C2)(D21)0]}/

[(1 - Vh2C2)(D22)0 - (D11)0] (A-2)
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